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Abstract

We study the stability of vacua with spontaneously broken supersymmetry

in N = 2 supergravity theories with only hypermultiplets. Focusing on the

projection of the scalar mass matrix along the sGoldstino directions, we are

able to derive a universal upper bound on the lowest mass eigenvalue. This

bound only depends on the gravitino mass and the cosmological constant, but

not on the details of the quaternionic manifold spanned by the scalar fields.

Comparing with the Breitenlohner-Freedman bound shows that metastabil-

ity requires the cosmological constant to be smaller than a certain negative

critical value. Therefore, only AdS vacua with a sufficiently negative cosmo-

logical constant can be stable, while Minkowski and dS vacua necessarily have

a tachyonic direction.
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1 Introduction

A crucial issue in string theory is to identify a mechanism for supersymmetry break-

ing which, at the same time, keeps the cosmological constant small, as current exper-

imental observations suggest the existence of a tiny positive cosmological constant

(dark energy) driving the expansion of the universe that we observe today. This

has motivated the search for four-dimensional de Sitter (dS) vacua in string theory.

One possible approach to this problem is to stay within the low-energy effective

four-dimensional supergravity description and first determine the conditions under

which a metastable vacuum exhibiting spontaneous supersymmetry breaking with a

reasonably small cosmological constant can possibly arise. One may then similarly

ask under which conditions it is possible to realize slow-roll inflation in such a setup.

While finding the answers to these questions may not be sufficient for understanding

the vacuum selection mechanism within string theory, it would certainly be a useful

guideline for model building.

Arranging for metastable dS vacua in generic supersymmetric theories turns out

to be surprisingly difficult. One of the reasons is that these vacua necessarily break

supersymmetry spontaneously and hence supersymmetry does not guarantee the

stability of the ground state. Actually, in refs. [1, 2] a necessary condition for the

existence of metastable dS vacua within generic N = 1 supergravity theories was

identified.1 The crucial physical ingredient exploited in these analyses is the fact

that in the scalar field space the most dangerous directions for metastability are the

ones corresponding to the sGoldstinos, the supersymmetric partners of the Gold-

stino. While all the other multiplets can be made arbitrarily massive by suitably

tuning the superpotential, the Goldstino multiplet is only allowed to have mass split-

tings induced by supersymmetry breaking. Thus the requirement for the sGoldstino

square mass to satisfy the metastability bound (namely being positive in dS space

and within the negative Breitenlohner-Freedman (BF) bound [4] in anti de Sitter

(AdS) space) is independent of the superpotential but instead poses a strong nec-

essary condition on the curvature of the scalar geometry. More precisely, along the

sGoldstino direction the sectional curvature of the Kähler manifold spanned by the

scalar fields has to have a limited size. Since the sGoldstino direction is determined

by the superpotential this in turn poses also a constraint on the superpotential.

The aim of this paper is to pursue a similar study for N = 2 supergravity

theories. The motivation for doing this is two-fold: Firstly, the scalar field space

of N = 2 supergravity is not a special case of the N = 1 field space. Also, the

scalar potential in N = 2 theories is fixed by a gauging of isometries, while the

one of N = 1 theories is governed by an arbitrary superpotential. This makes the

two analyses qualitatively different. Secondly, the hidden sector of string theory,

1See also [3] for an analysis with similar spirit applied to the idea of landscape of vacua.
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where supersymmetry is believed to be spontaneously broken, often displays such an

extended supersymmetry. Therefore an analysis in extended supergravity theories

seems to be more suitable to establish the relation with higher-dimensional theories.

As a first step of this program we will focus in this paper on the simple situation

of N = 2 theories which involve only hypermultiplets. As we will see in the body

of the paper these theories are in some sense the analogs of N = 1 theories with

only chiral multiplets.2 The main result we find is that in N = 2 theories with only

hypermultiplets metastability implies a negative upper bound on the cosmological

constant and therefore dS vacua (as well as slow-roll inflation) are always excluded.

A similar conclusion was also reached in the other particular situation of N = 2

theories involving only vector multiplets and Abelian gaugings, where metastability

forces the cosmological constant to be negative [5, 6]. The study of more general

situations, involving both hyper and vector multiplets and/or non-Abelian gaugings,

is left to a subsequent paper [7]. In this more general type of theories a richer variety

of possibilities is expected to exist. In fact some particular examples of stable dS

vacua have already been constructed in this context, for instance in refs. [8, 9]

exploiting non-Abelian gauge symmetries.

The paper is organized as follows. In Section 2 we briefly review the results

of refs. [1, 2] using a formalism that is tailored for the transition to N = 2 theo-

ries. In fact we slightly generalize the previous analyses in that we also derive a

constraint for the existence of metastable AdS ground states with spontaneously

broken supersymmetry. In Section 3 we show that in N = 2 supergravities with

only hypermultiplets no metastable dS ground states exist and derive a bound for

the non-supersymmetric AdS vacua. Finally, in Section 4 we summarize our conclu-

sion and give an outlook on future directions of investigation. For completeness, we

record the computations of the supertrace sum rules on boson and fermion masses

for N = 1 and N = 2 theories in Appendix A. We also summarize our conventions

for the curvature of real and complex manifolds in Appendix B.

2 N=1 theories with chiral multiplets

In order to prepare for the analysis in N = 2 supergravity, we shall start by briefly

reviewing the conditions for the existence of metastable vacua in spontaneously

broken N = 1 supergravity. We follow our earlier papers [1, 2] but use a slightly

modified formalism, which makes the transition to N = 2 theories somewhat more

suggestive. Furthermore, in [1, 2] we concentrated on finding dS vacua whereas in

the following we extend the analysis to also include non-supersymmetric AdS vacua.

2However, they have the peculiarity of becoming trivial in the limit of rigid supersymmetry,

where gravity is decoupled.
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2.1 Preliminaries

Let us consider a generic N = 1 theory with n chiral multiplets Φi, containing

complex scalar fields φi and chiral fermions χi [10]. This theory is described by a

superpotential W and a Kähler potential K which defines a Kähler-Hodge geometry

with a metric for the scalar fields given by gī = Kī. The theory has a U(1) Kähler

invariance which transforms K → K + f + f̄ and W → We−f . The holonomy of

the scalar manifold is contained in U(1) × U(n), where the U(1) curvature form is

identified with the Kähler form while the U(n) curvature is arbitrary.

Instead of choosing a Kähler gauge and describing the theory in terms of the

invariant function G = K + log|W |2, we will use instead a different formulation

where this symmetry is kept manifest. For this purpose, it is useful to introduce the

quantity

L ≡ eK/2W . (2.1)

L transforms with weight 1
2

under Kähler transformations: L → e−(f−f̄)/2 L. It

is then convenient to define covariant derivatives ∇ which include the U(1) Kähler

connection in addition to the standard metric-compatible Christoffel connection. On

a scalar quantity of weight p, for instance, one has ∇i = ∂i +pKi and ∇ı̄ = ∂ı̄−pKı̄.

The covariant derivatives of L are then found to be:

∇ı̄L = 0 , ∇iL = eK/2
(

Wi +KiW
)

. (2.2)

From here one can see that L is covariantly anti-holomorphic with its holomorphic

covariant derivative being related to the order parameters of supersymmetry break-

ing. Indeed the supersymmetry transformation of the fermions include the term

δǫχ̄
ı̄ = −

√
2 ǭ g ı̄jNj + . . . , where the fermionic shifts Ni are given by:

Ni ≡ ∇iL . (2.3)

For future reference let us also record the anti-holomorphic derivatives of Ni. These

are simply given by

∇̄ Ni = gī L ⇒ ∇iN̄
j = δj

i L̄ . (2.4)

Also note that since ∇i involve both the Christoffel connection and the U(1)

Kähler connection, the commutator of two covariant derivatives acting on an object

of non-zero U(1) weight has an additional piece coming from the U(1) curvature.

For instance, on the fermionic shift one has:

[

∇i,∇̄

]

Nk = Rīks̄N̄
s − gīNk , (2.5)

where Rīks̄ is the Riemann tensor of the Kähler manifold. (Our curvature conven-

tions are summarized in Appendix B.)
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2.2 Mass matrices

Using the notation that we just introduced, the scalar potential V takes the following

simple form:

V = N̄ iNi − 3|L|2 . (2.6)

Its first derivative is then given by:

∇iV = −2NiL̄+ N̄ j∇iNj . (2.7)

Stationary points satisfy ∇iV = 0, and correspond to values of the scalar fields for

which N̄ j ∇iNj = 2NiL̄.

Let us now compute the bosonic and fermionic mass matrices at a generic sta-

tionary point. The scalar masses are given by the second derivatives of V . These

are easily computed and can be partly simplified by using the identity (2.5). One

finds:

∇i∇̄V = −2gī|L|2+ ∇iNk∇̄N̄
k−Rīpq̄N

pN̄ q̄+ gīN̄
kNk −NiN̄̄ ,

∇i∇jV = −∇iNjL̄+ N̄k∇(i∇j)Nk .
(2.8)

The two independent blocks for the mass matrix are then given by:

m2
0ī = ∇i∇̄V , m2

0ij = ∇i∇jV . (2.9)

The fermionic mass matrix is also easy to compute. The mass terms for the

physical fermions and the gravitino field can be read off from the following fermionic

terms in the Lagrangian:

Lfm = − Lψµσµνψ
ν − L̄ψ̄µσ̄µνψ̄

ν − i√
2
Niχ

iσµψ̄
µ + i√

2
N̄̄χ̄

j σ̄µψ
µ

− 1
2
Mijχ

iχj − 1
2
M̄ı̄̄χ

ı̄χ̄ + . . . ,
(2.10)

where

Mij ≡ ∇iNj = ∇i∇jL . (2.11)

In the ground state the gravitino ψµ can be disentangled from the chiral fermions

by the redefinition

ψ̃µ = ψµ + i
3
√

2
L−1N̄ σ

µχ̄ , (2.12)

where L and N̄ are evaluated at the minimum of V . This results in the following

mass matrices for the physical fields:

m3/2 = L , m1/2ij = Mij − 2
3
L−1NiNj = ∇iNj − 2

3
L−1NiNj , (2.13)

The mass matrices (2.9) and (2.13) obey a supersymmetric sum rule, which we

record in Appendix A.1.
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2.3 Goldstino and sGoldstinos

As we already recalled, supersymmetry is spontaneously broken if in the vacuum

Ni 6= 0. The associated Goldstino fermion is then given by the linear combination

η = Niχ
i. This can be seen from the non-linear supersymmetry transformation of η

and/or from the fact that in a Minkowski vacuum the vector Ni is a null vector of

the physical mass matrix m1/2ij . Indeed, from (2.11) and the stationarity condition

following from (2.7) it is easy to see that MijN̄
j = 2L̄Ni. Using then (2.6) and

(2.13) this implies

m1/2ijN̄
j = −2

3
L−1V Ni , (2.14)

with the right hand side being zero when V = 0. The Goldstino field η = Niχ
i

has therefore a mass parameter which vanishes in Minkowski space and has a fixed

value in units of the cosmological constant in AdS space:

mη = −2
3
m−1

3/2V . (2.15)

Finally the complex sGoldstino, i.e. the scalar field describing the supersymmetric

partners of the Goldstino, is defined analogously by η̃ ≡ Niφ
i.

2.4 Stability of supersymmetric vacua

Although in this paper we are interested in the stability of ground states with sponta-

neously broken supersymmetry, let us briefly present the proof that supersymmetric

ground states are always stable. In this case one has Ni = 0, which automatically

implies the stationarity condition coming from (2.7) and a semi-negative definite

cosmological constant V = −3 |L|2. Moreover, the scalar mass matrix simplifies as

follows:

m2
0ī = ∇iNk∇̄N̄

k − 2gī|L|2 , m2
0ij = −L̄∇iNj . (2.16)

Looking along an arbitrary direction vI = (vi, v ı̄) in field space with normalization

vIvI = 1 (or vivi = 1/2), one finds:

m2
0 = m2

0IJ̄ v
IvJ̄ = 2m2

0ī v
iv̄ +m2

0ij v
ivj +m2

0ı̄̄ v
ı̄v̄

= 1
2

(

2vi∇iNk − vkL
)(

2v̄∇̄N̄
k − vkL̄

)

− 9
2
vivi |L|2 . (2.17)

In the last expression, the first term gives a semi-positive definite contribution so

that m2
0 satisfies the BF [4] bound3

m2
0 ≥ 3

4
V . (2.18)

3In AdSd the BF bound is given by m2R2 ≥ − 1

4
(d− 1)2, where R is the AdS radius. For d = 4

and R2 = −3V −1 this leads to the bound (2.18).
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Notice that a minimal m2
0 which saturates the bound can only be achieved along

the special complex directions vi
0 for which the semi-positive terms are zero. These

directions correspond to pseudo-eigenvectors of the matrix Mij , in the sense that

M ̄
i v0 ̄ = 2Lv0 i.

2.5 Stability of non-supersymmetric vacua

Let us now turn to the stability of non-supersymmetric vacua, that is, those for

which Ni 6= 0. This is largely discussed in refs. [1, 2] and here we only briefly recall

the results. However we do extend our previous analysis in that we also include

non-supersymmetric AdS ground states.

As was explained in detail in refs. [1, 2] the most stringent constraints on the

stability of the ground state come from the directions of the two sGoldstinos. There-

fore we focus on the sGoldstino subspace defined by the complex direction Ni and

consider the quantity

m2
η̃ ≡ m2

0īN̄
iN ̄

N̄kNk

. (2.19)

With the help of (2.6), (2.7) and (2.8) this can be rewritten as

m2
η̃ = Rη̃N̄

iNi + 2|L|2 = 3
(

Rη̃ + 2
3

)

|m3/2|2 +Rη̃ V , (2.20)

where Rη̃ is the normalized holomorphic sectional curvature along the sGoldstino

direction, namely

Rη̃ = −Rīpq̄N̄
iN ̄N̄pN q̄

(N̄kNk)2
. (2.21)

The crucial observation is that m2
η̃ represents an upper bound for the value of the

smallest eigenvalue of the full mass matrix [1, 2].4 Therefore a necessary condition

for stability is that the value of m2
η̃ should be non-negative for dS or Minkowski

vacua and should satisfy the BF bound (2.18) for AdS vacua. It is convenient to

phrase the discussion in terms of the following dimensionless parameter γ defined

as

γ ≡ V

3 |m3/2|2
. (2.22)

Minkowski/dS vacua correspond to γ ∈ [0,+∞) while AdS vacua have γ ∈ [−1, 0]

since the cosmological constant is bounded to be larger than its critical supersym-

metric value V ≥ −3|m3/2|2. Stability requires m2
η̃ ≥ 0 for dS vacua and m2

η̃ ≥ 3
4
V

4In fact, the quantity m2

η̃ arises as half of the trace of the two-dimensional submatrix of the

full mass matrix along the two independent real directions that can be formed out of the complex

Goldstino direction. It thus corresponds to the average of the two sGoldstino square masses. The

splitting of these two masses depends explicitly on the superpotential and its derivatives, and is

therefore less interesting.
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for AdS vacua which, using (2.20) and (2.22), can be viewed as the following bound

for Rη̃:
5

Rη̃ ≥















−2

3

1

1 + γ
for γ ≥ 0 ,

−2

3

1 − 9
8
γ

1 + γ
for − 1 ≤ γ ≤ 0 .

(2.23)

From this expression we see that the condition for finding metastable vacua

with broken supersymmetry becomes more and more restrictive as the cosmological

constant is increased: AdS vacua with minimal cosmological constant (γ → −1)

can always exist, as in such a case the condition simply reads Rη̃ > −∞. On the

other hand, Minkowski vacua (γ = 0) can exist only if Rη̃ ≥ −2
3
. Finally, dS vacua

with large cosmological constant (γ → +∞) can exist only if Rη̃ ≥ 0. The maximal

freedom is therefore obtained in those models in which the sectional curvature Rη̃

either vanishes or turns out to be positive.

Notice finally that in the limit in which gravity is decoupled by sending the

Planck scale to infinity while keeping the other scales fixed, the value of the quantity

m2
η̃ simplifies to the following expression:

m2
η̃ ≃ 3Rη̃(1 + γ)|m3/2|2 . (2.24)

The standard limit of rigid supersymmetry can be obtained by further sending m3/2

to zero. In that limit one finds m2
η̃ ≃ Rη̃V .

Another interesting thing to note is the fact that the product of several Kähler-

Hodge manifolds is again a Kähler-Hodge manifold. Thanks to this property, it is

actually easy to construct models satisfying the necessary condition (2.23). Indeed,

starting with some manifolds Mi with sectional curvatures that are negative and

bounded by some finite maximal values Ri, one can construct the product man-

ifold M = ×iMi and find directions along which the sectional curvature is still

negative but larger (i.e. closer to zero) than any of the individual Ri, the maximal

possible value being Rmin = (
∑

iR
−1
i )−1. This means in particular that, by taking

sufficiently many copies of any given Kähler manifold, one can always satisfy the

condition (2.23).

The fact that a Kähler manifold can factorize into several Kähler submanifolds

also allows for situations in which the scalar fields spanning some of the submani-

folds are stabilized in a supersymmetric way whereas the scalar fields spanning the

rest of the submanifolds spontaneously break supersymmetry, provided that the su-

perpotential also has some special properties. For the non-supersymmetric sector,

5Note that we use here and in (2.21) a different sign convention for the Ricci-, scalar- and

sectional curvatures of Kähler manifolds compared to refs. [1, 2], although the Riemann tensor is

defined in the same way. This is needed to consistently compare with the corresponding quantities

for quaternionic-Kähler manifolds arising in next section. See Appendix B for more details.
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one would get again a condition like (2.23), where Rη̃ now refers to the relevant

supersymmetry-breaking submanifold. For the supersymmetric sector, on the other

hand, one should be careful as stability is not guaranteed in this case due to the

fact that the cosmological constant is sourced by the other sector and departs from

its critical supersymmetric value. As was shown in [11] for the particular case in

which the two sectors interact only gravitationally, this cases cannot be viewed in

general as a continuous limit of a supersymmetry breaking situation and therefore

the stability of such vacua must then be studied separately.

3 N = 2 theories with hypermultiplets

So far we have reviewed the stability of non-supersymmetric ground states in N = 1

supergravity. Now we will move to the main topic of this paper and we will extend

this analysis to the case of N = 2 supergravity coupled to an arbitrary number of

hypermultiplets.

3.1 Preliminaries

Let us begin by reviewing the relevant aspects of the N = 2 theories and fix some

conventions. For more details see, for example, refs. [12, 13, 14, 15].6 The gravita-

tional multiplet contains the space-time metric gµν , a pair of gravitini ψA
µ , A = 1, 2

and an Abelian graviphoton Aµ. This multiplet can be coupled to n hypermultiplets

H i, i = 1, . . . , n which contain 4n scalar fields qu, u = 1, . . . , 4n and 2n fermions

ξα , α = 1, . . . , 2n. The scalar fields qu span a quaternionic-Kähler manifold of di-

mension 4n with holonomy group Sp(2n) × SU(2).

On a quaternionic-Kähler manifold there exists a triplet of almost complex struc-

tures Jx, x = 1, 2, 3 which satisfy an SU(2) algebra. Associated with them is a

triplet of Hyperkähler two-forms Ωx which consequently obey

Ωx
uwΩyw

v = −huvδ
xy − ǫxyzΩz

uv , (3.1)

where huv is the quaternionic metric. Furthermore, the Ωx are identified with the

field strength of the SU(2) part of the holonomy group and as a consequence they

are covariantly constant with respect to the SU(2) connection: ∇wΩx
uv = 0.7 Here

6In the following we discuss gauged N = 2 supergravity in the standard electric frame following

refs. [12, 13, 14, 15]. In principle it is also possible to gauge with respect to the magnetic gravipho-

ton (see, for example, refs. [16]). However, if only the graviphoton is present, the symplectic

rotation connecting the two cases is trivial and thus, without loss of generality, we can confine our

discussion to the electric case.
7Strictly speaking Ωx only needs to be proportional to the Hyperkähler two-forms but in order

to simplify the notation we have chosen the proportionality factor to be equal to −1, as is usually

done in the literature (corresponding to λ = −1 in [13, 14] and ν = −2 in [15]).
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and in the following, ∇u denotes a covariant derivative involving also the SU(2)

connection.

Our conventions are as follows. The SU(2) doublet indices A,B are raised

and lowered in the usual way with the antisymmetric tensors ǫAB and ǫAB and the

matrices σx B
A denote the usual antisymmetric Pauli matrices. The matrices σx

AB and

σxAB are then symmetric and satisfy (σx
AB)∗ = −σxAB. They relate SU(2) triplets

to the symmetric product of two SU(2) doublets, and can be used to alternatively

describe any triplet as a bi-doublet through the definition ξAB ≡ iξxσxAB. Moreover,

they satisfy the identity:

σx
ABσ

x
CD = 2ǫA(CǫBD) . (3.2)

For the Sp(2n) group, we denote by α, β = 1, . . . , 2n the 2n-plets indices. These are

raised and lowered with the antisymmetric symplectic tensors Cαβ and Cαβ .

It is convenient to define a vielbein UαA
u for the quaternionic metric by the

relation huv = UαA
u UβB

v ǫABCαβ . The inverse vielbein Uu
αA then satisfies Uu

αAU
αA
v = δu

v

and UαA
u Uu

βB = δα
β δ

A
B. These actually satisfy the stronger relations huv = ǫABU

αA
u UB

vα

and Ωx
uv = −iσx

ABU
αA
u UB

vα, or Uu
αAU

v
βBhuv = ǫABCαβ and Uu

αAU
v
βBΩx

uv = −iσx
ABCαβ,

which are conveniently summarized in the identity:

UαA
u UB

αv = 1
2
huvǫ

AB− i
2
Ωx

uvσ
xAB . (3.3)

The curvature consists of an SU(2) part and an Sp(2n) part with the corre-

sponding curvature forms given by:

RAB
uv = −iΩx

uvσ
xAB , Rαβ

uv = ǫABU
γA
[u U δB

v]

(

−2 δα
(γδ

β
δ) + Σαβ

γδ

)

. (3.4)

The tensor Σαβγδ must be completely symmetric but is otherwise arbitrary, and

represents the only freedom in the curvature. The full Riemann tensor with two

‘flat’ index-pairs is given by RαAβB
uv = RAB

uv C
αβ + Rαβ

uv ǫ
AB. Using eq. (3.2) the

curvature with only flat indices is found to be

RαAβBγCδD = 2 ǫA(CǫBD)CαβCγδ + ǫABǫCD

(

−2Cα(γCβδ) + Σαβγδ

)

. (3.5)

Its version with only curved indices is instead given by:

Ruvrs = −hu[rhvs] − Ωx
uvΩ

x
rs − Ωx

u[rΩ
x
vs] + Σuvrs , (3.6)

where:

Σuvrs = ǫABǫCDU
αA
u UβB

v UγC
r U δD

s Σαβγδ . (3.7)

The tensor Σuvrs behaves like a Weyl component of the Riemann tensor, in the sense

that any contraction with the metric vanishes. This implies that the Ricci tensor is

completely universal and that quaternionic-Kähler manifolds are Einstein manifolds

with

Ruv = −2(n+ 2)huv , R = −8n(n + 2) . (3.8)
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So far we have discussed the ungauged N = 2 theory. Let us now turn to the

situation in which an isometry of huv is gauged with the graviphoton Aµ. In this case

the scalars are charged under the isometry group and transform as δqu = Λ ku(q),

where Λ is the space-time dependent gauge parameter while ku(q) is the Killing

vector, which satisfies the Killing equation

∇(ukv) = 0 . (3.9)

In the Lagrangian all the space-time derivatives acting on scalar fields are then

replaced by covariant derivatives, of the form Dµq
u ≡ ∂µq

u + kuAµ.

On a quaternionic-Kähler manifold, any Killing vector ku can be expressed in

terms of a triplet of Killing potentials P x, defined by

∇uP
x = 2 Ωx

uvk
v . (3.10)

Actually one can also relate ku and P x as:

ku = −1
6
Ωx

uv∇vP x , P x = 1
2n

Ωx
uv∇ukv . (3.11)

One also finds the following relations for the second derivatives of these quantities:

[

∇u,∇v

]

P x = 2 ǫxyzΩy
uvP

z ,
[

∇u,∇v

]

kw = Ruvwsk
s ,

∇u∇vkw = −Rvwusk
s .

(3.12)

Moreover, P x and ku satisfy the harmonic equations

∇w∇wP
x = 4nP x , ∇w∇wku = 2(n+ 2) ku . (3.13)

Finally, the derivatives of the Killing potentials P x turn out to be related to the

order parameters of supersymmetry breaking. Indeed, the supersymmetry transfor-

mation of the hyperini has the form δξα = NA
α ǫA + . . . , where the fermionic shifts

NA
α are given by:

NA
α = 2UA

uαk
u = 1

3
Uu

αB∇uP
AB . (3.14)

3.2 Mass matrices

The scalar potential can be expressed in terms of the Killing vector and the Killing

potentials, and takes the following simple form:

V = Nα
AN

A
α − 3P xP x = 4 kwkw − 3P xP x . (3.15)

Its first derivatives are given by

∇uV = 8 kw∇ukw − 6P x∇uP
x , (3.16)
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and stationary points where ∇uV = 0 are thus characterized by the condition

kw∇ukw = 3
4
P x∇uP

x.

The scalar mass matrix at a stationary point of the potential is related to the

second derivatives of the potential. These are found to be:

∇u∇vV = 8∇uk
w∇vkw − 8Rusvtk

skt− 6∇uP
x∇vP

x− 6P x∇(u∇v)P
x . (3.17)

In the conventions we are following, the kinetic term of the scalar fields has the

non-canonical form Lkin = −huvDµq
uDµqv. The properly normalized mass matrix

for the scalars is thus given by:

m2
0uv = 1

2
∇u∇vV . (3.18)

The square mass of the graviphoton is induced by the connection terms in the

covariant derivatives of the scalars kinetic term. Taking into account that with

the conventions we are following the kinetic term for the graviphoton has the non-

canonical form Lkin = −1
8
FµνF

µν , one deduces that:

m2
1 = 4kuku . (3.19)

The mass terms for the hyperini and the gravitini can be read off from the

fermionic part of the N = 2 Lagrangian

Lfm = PABψ̄
A
µ γ

µνψB
ν + P̄ABψ̄Aµγ

µνψνB + 2iNA
α ξ̄

αγµψ
µ
A + 2iNα

A ξ̄αγµψ
µA

+Mαβ ξ̄
αξβ + M̄αβ ξ̄αξβ + . . . , (3.20)

where

Mαβ = −Uu
αAU

v
βBǫ

AB∇[ukv] = −1
6
Uu

αAU
v
βB∇u∇vP

AB . (3.21)

In order to disentangle the gravitino from the Goldstino, one redefines

ψ̃µA = ψµA + i
3
P−1ABNβ

Bγ
µξβ , (3.22)

which results in the following mass matrices for the physical fermions and the two

gravitini8

m1/2αβ = Mαβ − 4
3
P̄−1

AB N
A
α N

B
β = −Uu

αAU
v
βB

(

ǫAB∇[ukv] +
16
3
PAB|m3/2|−2kukv

)

,

m3/2AB = PAB . (3.23)

Thus, the gravitino mass scale is simply given by:

|m3/2| =
√
P xP x . (3.24)

Comparing with the formulation of N = 1 theories described in Section 2, we

can now identify the generalization of each ingredient to the N = 2 case. We see

that P x is the generalization of L while NA
α is instead the generalization of Ni.

8Notice that PAC P̄CB = P xP x δB
A . It follows that P−1AB = (P xP x)−1P̄AB and similarly

P̄−1

AB = (P xP x)−1PAB.
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3.3 Goldstinos and sGoldstinos

Supersymmetry is spontaneously broken whenever NA
α 6= 0 on the vacuum. The

corresponding two Goldstino fermions are then given by ηA = NA
α ξ

α. Using the

stationarity condition following from (3.16) and the properties of the vielbein one

can show that

MαβN
β
A = 2PABN

B
α . (3.25)

Using (3.23) together with the relation Nα
AN

B
α = 2 kwkw δ

B
A , eq. (3.25) implies

m1/2αβ N
β
A = −2

3
V P̄−1

ABN
B
α . (3.26)

Thus we see again that the normalized mass matrix for the two Goldstinos vanishes

identically in Minkowski space and has a fixed form in units of the cosmological

constant in AdS space:

mηAB = −2
3
m−1

3/2ABV . (3.27)

The two independent Goldstino fermions ηA = NA
α ξ

α, which transform as a

doublet under SU(2), have four real sGoldstino partners given by η̃AB = NAB
u qu.

The quantity NAB
u transforms as the tensor product of two SU(2) doublets, and

can be computed by acting with the inverse vielbein UαA
u on NB

α . This is a result

of the fact that UαA
u locally maps the tangent space where the fermions are defined

to the coordinates of the manifold associated with the scalar fields. More precisely,

one finds:

NAB
u = UαA

u NB
α = Nu ǫ

AB + iNx
u σ

xAB , (3.28)

where in the second equation we used the identity (3.3) to decompose NAB
u into a

singlet Nu plus a triplet Nx
u with

Nu = ku , Nx
u = −Ωxv

u kv = −1
2
∇uP

x . (3.29)

The four-dimensional space of sGoldstino directions can thus be parameterized by

(Nu, N
x
u ).9 These vectors form an orthonormal basis, in the sense that:

NuNu = kuku , NxuNy
u = kuku δ

xy , NuNx
u = 0 . (3.30)

It is then convenient to use the fields η̃ = Nuq
u and η̃x = Nx

u q
u to parameterize the

four independent sGoldstinos.

3.4 Stability of supersymmetric vacua

Let us consider first the case of supersymmetric vacua. Unbroken supersymmetry

implies

ku = 0 ⇒ Nu = Nx
u = 0 . (3.31)

9Note that Nx
u conjugates Nu with respect to each of the three almost complex structures Ωxv

u .
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As usual, any point in the scalar field space where these conditions are fulfilled is

automatically a stationary point of the potential, as can be seen from eq. (3.16).

At such points the cosmological constant is negative and given by V = −3P xP x.

Moreover, the mass matrix (3.18) simplifies and can be rewritten as

m2
0uv = 4∇uk

w∇vkw − 3P x∇(u∇v)P
x

= 4
(

∇uk
w − 3

4
P xΩxw

u

)(

∇vkw − 3
4
P yΩy

vw

)

− 9
4
huvP

xP x .
(3.32)

In the last expression, the first term is semi-positive definite, so the value of the mass

matrix along any normalized direction vu, with vuvu = 1, satisfies the BF bound

(2.18) which guarantees stability: m2
0 = m2

0uvv
uvv ≥ 3

4
V . Note that the directions

vu
0 in field space for which this bound is saturated satisfy an equation of the form

(∇ukv)v
v
0 = 3

4
P xΩx

uvv
v
0 .

3.5 Stability of non-supersymmetric vacua

Let us now study the conditions under which metastable non-supersymmetric vacua

can exist. Spontaneously broken supersymmetry implies

ku 6= 0 ⇒ Nu, N
x
u 6= 0 . (3.33)

One can then study the mass matrix in the four-dimensional subspace of sGoldstino

directions spanned by the four vectors Nu = ku and Nx
u = −Ωxv

u kv. Gauge invariance

of the potential implies however that at any stationary point the vector Nu is a flat

direction of the potential, corresponding to the would-be Goldstone boson that

is eaten by the graviphoton. Let us then study the mass matrix in the three-

dimensional subspace defined by the vectors Nx
u given by

m2xy
η̃ =

m2
0uvN

uxNvy

NwNw
. (3.34)

This expression for m2xy
η̃ can be simplified using equations (3.17) and (3.18) and the

stationarity condition coming from (3.16).10 One then finds, after a straightforward

computation, the following simple expression

m2xy
η̃ = −4

(

Rxy
η̃ + 3 δxy

)

kwkw + 4
(

δxy − πxy
)

P zP z , (3.35)

where

πxy =
P xP y

P zP z
(3.36)

10The main intermediated step needed is the relation ∇wku∇wP x = 3P xku + 1

2
ǫxyzP y∇uP z.

This can be derived by taking a derivative of the identity kw∇wP x = 0 and using then the

stationarity condition and the first relation in (3.12).

13



is the projector along the direction defined by P x and Rxy
η̃ is given by

Rxy
η̃ =

RusvtN
uxN sNvyN t

(NwNw)2
. (3.37)

This quantity is something like a tri-holomorphic sectional curvature for the quater-

nionic directions NAB
u , in the sense that its diagonal elements correspond to the

three independent holomorphic sectional curvatures that one can build out of Nu

and one of its conjugates Nx
u = Jx

uvN
v. Using the expression (3.6) for the Riemann

tensor, one can evaluate Rxy
η̃ more explicitly, and express it in terms of the tensor

Σαβγδ. One actually finds:

Rxy
η̃ = −2 δxy − ΣαβγδN

αANβBNγCN δD

(N ǫENǫE)2
σx

ABσ
y
CD . (3.38)

Metastability of the vacuum requires that the eigenvalues of the three-dimen-

sional matrix m2xy
η̃ given in (3.35) should be either positive or above the BF bound,

depending on the sign of the cosmological constant. This condition depends on the

tensor Σαβγδ in a non-trivial way, and can be understood as a constraint on it. More

precisely, it restricts the values that the curvature is allowed to take in the subspace

of sGoldstino directions. As in the previous section, to analyze the implications

of the metastability constraints it is convenient to parametrize the value of the

cosmological constant through the dimensionless parameter γ = V/(3|m3/2|2).
To study the matrix m2xy

η̃ , it is convenient to switch to a basis of eigenvectors

of the projector πxy, which we shall denote by vx
i , i = 1, 2, 3, for the eigenvalues

λi = (1, 0, 0) (so that vx
1 is the direction defined by P x and vx

2,3 span the subspace

orthogonal to it). These vectors can be chosen in such a way as to form an or-

thonormal and complete basis of the three-dimensional space under consideration,

with:
πxyvy

i = λiv
x
i (no sum on i) and λi = (1, 0, 0) ,

vx
i v

x
j = δij , vx

i v
y
i = δxy .

(3.39)

In this new basis, the matrix m2
η̃ij ≡ m2xy

η̃ vx
i v

y
j is still not diagonal. But each of its

diagonal elements must nevertheless necessarily satisfy the metastability bound on

their own. These three elements define indeed the values of the square mass along

the three special orthogonal directions vx
i N

x
u , which we shall denote by:

m2
η̃i ≡ m2xy

η̃ vx
i v

y
i (no sum on i) . (3.40)

Using (3.35) and (3.39) one computes

m2
η̃i = −3

(

Rη̃i + 5
3

+ 4
3
λi

)

|m3/2|2 −
(

Rη̃i + 3
)

V , (3.41)

in terms of the holomorphic sectional curvatures defined by the rotated complex

structures Jiuv = Jx
uvv

x
i , which are given by:

Rη̃i ≡ Rxy
η̃ v

x
i v

y
i (no sum on i) . (3.42)
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The metastability condition (m2
0 ≥ 0 if V ≥ 0 and m2

0 ≥ 3
4
V if V < 0) applied to

m2
η̃i then implies

Rη̃i ≤



















−5+4λi

3

1+ 9
5+4λi

γ

1 + γ
, γ ≥ 0 ,

−5+4λi

3

1+ 45
4(5+4λi)

γ

1 + γ
, γ ≤ 0 .

(3.43)

Summarizing, we see that in N = 2 theories we get three conditions, all similar

to the one of N = 1. They are associated with three of the partners of the two

independent Goldstinos. Note however that the coefficients in the quantities m2
η̃i

differ from the coefficients in the N = 1 quantity m2
η̃ given in (2.20). This is

reasonable, since the geometry is quaternionic-Kähler for N = 2 and Kähler-Hodge

for N = 1, and these two kinds of geometries are unrelated.11 Furthermore, note

that the sectional curvatures enter (2.20) and (3.41) with a different sign, once

compatible conventions for real and complex manifolds are used (see Appendix B).

This results in opposite inequality signs in the metastability constraints on the

sectional curvature given in (2.23) and (3.43).

Before we proceed let us inspect the limit where gravity is decoupled by sending

the Planck scale to infinity. In this limit, the N = 2 geometry becomes Hyperkähler

while the N = 1 geometry becomes Kähler. The two geometries are then related, in

the sense that the former is just a subclass of the latter. As a result, N = 2 theories

reduce to a special case of N = 1 theories, and the metastability conditions arising

in the two cases can be directly compared. In this rigid limit, however, in which the

graviton, the gravitino and the graviphoton are decoupled, the scalar potential of

N = 2 theories with only hypermultiplets becomes trivial. This corresponds to the

fact that from the N = 1 perspective the superpotential vanishes. As a result also

the sGoldstino masses go to zero, independently of the curvature of the Hyperkähler

manifold and we have

m2
η̃i ≃ 0 . (3.44)

This means that in this limit the N = 2 conditions can never really be satisfied, since

the potential identically vanishes and thus the scalar fields cannot be stabilized. The

N = 1 conditions implied by (2.24), on the other hand, can be satisfied for models

with suitable geometry, but when the superpotential is sent to zero the scalar masses

flow to zero also in this case.

Up to now we have not used the fact that quaternionic-Kähler manifolds have a

constrained curvature tensor with a sectional curvature given in (3.38). Similarly,

11A notable exception to this general fact is given by the family of coset manifolds

SU(2, n)/(U(1) × SU(2) × SU(n)), which turn out to be both Kähler-Hodge and quaternionic-

Kähler.
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the Rη̃i that appear in (3.41) take the form:

Rη̃i = −2 + ∆i(Σ) , (3.45)

where

∆i(Σ) ≡ ΣαβγδN
αANβBNγCN δD

(N ǫENǫE)2
vx

i σ
x
ABv

y
i σ

y
CD (no sum on i) . (3.46)

So the metastability conditions constrain the allowed values for the quantities ∆i(Σ),

for a given value of the parameter γ.

As a first remark, note that for those particular quaternionic-Kähler manifolds

for which the tensor Σαβγδ vanishes, the situation simplifies substantially.12 Indeed,

in that case one simply has Rη̃i = −2, and thus m2
η̃i = (1 − 4λi)|m3/2|2 − V , that

is m2
η̃1 = −V − 3 |m3/2|2 in the direction parallel to P x and m2

η̃2,3 = −V + |m3/2|2
along the two directions orthogonal to P x. These satisfy the stability bound only if

γ ∈ [−1,−4
7
], and thus Minkowski/dS vacua are excluded.

Even for more general quaternionic-Kähler manifolds with Σ 6= 0, we can actu-

ally obtain a stronger constraint from (3.41). Notice in this respect that the three

square masses (3.41) transform as a triplet under SU(2) R-symmetry transforma-

tions, reflecting the fact that they are associated with the triplet of almost complex

structures existing on quaternionic-Kähler manifolds. One may then try to look for

an SU(2) singlet projection and check whether it leads to any useful information.

From the point of view of the original mass matrix m2xy
η̃ , the only object that could

lead to such a thing is the trace. More precisely, one can consider the average of the

diagonal elements, which by the completeness relation in (3.39) also corresponds to

the average of the three masses m2
η̃i computed above:

m2
η̃ ≡ 1

3
δxym2xy

η̃ = 1
3

∑

im
2
η̃i . (3.47)

Using (3.35) one arrives at

m2
η̃ = −3

(

Rη̃ + 19
9

)

|m3/2|2 −
(

Rη̃ + 3
)

V , (3.48)

where Rη̃ is the averaged sectional curvature

Rη̃ ≡ 1
3
δxyRxy = 1

3

∑

iRη̃i . (3.49)

Note now that m2
η̃ also gives an upper bound on the smallest mass eigenvalue, as a

consequence of the fact that each m2
η̃i gives itself a lower bound.13 The metastability

12This is for instance the case for the family of coset manifolds Sp(2, 2n)/(Sp(2)× Sp(2n)).
13Indeed, m2

η̃ is the averaged trace of the matrix, and gives thus the average of the eigenvalues.

Each m2

η̃i is instead just the projection of the matrix along a specific direction, and is thus a

combination of the eigenvalues with coefficients whose square sum up to 1. In both cases, the

resulting value is clearly an upper bound to the smallest eigenvalue of m2xy
η̃ , and thus also of the

full mass matrix m2

0uv.
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condition applied to m2
η̃ then implies

Rη̃ ≤















−19

9

1+ 27
19
γ

1 + γ
, γ ≥ 0 ,

−19

9

1+ 135
76
γ

1 + γ
, γ ≤ 0 .

(3.50)

The crucial observation that one can make at this point is that the averaged sectional

curvature Rη̃ actually is independent of the tensor Σαβγδ and thus takes a universal

value common to all the possible quaternionic-Kähler manifolds. Indeed, using the

property (3.2) in (3.45) and (3.49), one finds:14

Rη̃ = −2 − 2

3

ΣαβγδN
αANβBNγCN δD

(N ǫENǫE)2
ǫABǫCD = −2 . (3.51)

Inserting (3.51) into (3.48) one then finds the simple expression

m2
η̃ = −1

3

(

1 + 9 γ
)

|m3/2|2 . (3.52)

This satisfies the metastability bound only for

γ ∈
[

−1,− 4
63

]

. (3.53)

Notice that this restriction implies in paticular that dS vacua are always excluded.15

This is unavoidable and holds true for any scalar geometry.16 AdS vacua, on the

other hand, are allowed if they satisfy (3.53). This represents the main result of our

investigation.

Notice finally that the product of several quaternionic-Kähler manifolds is no

longer a quaternionic-Kähler manifold. This is a consequence of the particular form

that the Riemann curvature tensor must take. More precisely, the Ricci- and scalar

curvatures are completely fixed by the dimensionality of the space (c.f. (3.8)), and

this relation is destroyed when taking the product of two of such manifolds. Thus,

there is no easy way of diluting the curvature just by taking products of manifolds

and thus the bound is always unavoidably violated.

14This follows from the fact that the contraction NαANβBǫAB is antisymmetric in α, β whereas

the tensor Σαβγδ is completely symmetric in all indices.
15This result was already know to hold for the particular subclasses of quaternionic-Kähler

manifolds for which n = 1 as well as those with n > 1 and Σαβγδ = 0 [17].
16 There is an apparent counter-example of this result in ref. [18], where a metastable dS vacuum

was found in the universal hypermultiplet geometry with instanton corrections taken into account.

However the approximation used does not keep the metric quaternionic and we suspect that the dS

vacuum is destabilized once the higher instanton corrections required to make the metric quater-

nionic are included. We understand that preliminary investigations point in this direction and we

thank F. Saueressig for discussions on this issue.
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4 Conclusions and outlook

In this paper we have performed a general study on the conditions under which

locally stable vacua with spontaneously broken supersymmetry can occur in N = 2

supergravity theories with only hypermultiplets. The results have been compared

with the corresponding conditions that were already known for N = 1 supergravity

theories with only chiral multiplets [1, 2]. As in the N = 1 case, our strategy has

been to look at the most dangerous scalar fluctuations, which are the ones related

to the scalar partners of the Goldstino fermion, the sGoldstinos.

In the N = 1 case the constraint can be formulated as a lower bound on the

curvature of the scalar manifold spanned by the scalar components of the chiral mul-

tiplets. More concretely, they represent a lower bound on the holomorphic sectional

curvature in the complex sGoldstino direction defined by the complex structure of

the Kähler-Hodge scalar manifold. They constrain therefore both the allowed scalar

geometries and the allowed supersymmetry breaking directions. In the N = 2 case,

we have found that there are three constraints on the curvature of the scalar man-

ifold, which are all similar to the one arising in N = 1 theories. This corresponds

to the fact that in this case there are more sGoldstinos. More precisely, one finds

an upper bound on the three possible holomorphic sectional curvatures in the com-

plex sGoldstino directions defined by the three almost complex structures of the

quaternionic-Kähler scalar manifold. However, it turns out that the quaternionic-

Kähler geometry underlying N = 2 models implies a very restricted form of the

curvature tensor, which is completely fixed up to a Weyl-type contribution Σ. This

is in contrast with the Kähler-Hodge geometry underlying N = 1 theories, which

allows instead for a generic curvature tensor. As a consequence, the average of the

three holomorphic sectional curvatures arising in the N = 2 constraints happens to

have a fixed constant value independent of Σ, which translates into a universal neg-

ative upper bound on the values of the cosmological constant that are compatible

with the metastability of the vacuum. This implies in particular that metastable dS

vacua are excluded, independently of the specific scalar geometry of the model.17

The strong results that we find for N = 2 theories in the case with only hyper-

multiplets are very similar to the comparably strong results holding in the case in

which only vector multiplets are present and the gauging is Abelian [5, 6]. They

both have to do with the restricted form that the curvature of the scalar manifolds,

which are respectively quaternionic-Kähler and special-Kähler, is allowed to take.

17Under certain (restrictive) circumstances, it is possible to consistently truncate an N = 2

theory with n hypermultiplets down to an N = 1 theory with n′ chiral multiplets [19]. At the

geometrical level, this truncation involves the restriction to a Kähler-Hodge submanifold of the

original quaternionic-Kähler manifold. Even though the curvature of the Kähler submanifold is

arbitrary, the superpotential and thus the sGoldstino directions are more constraint than in generic

N = 1 theories. It would be interesting to study in more detail the stability conditions in this case.
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In fact, the upper bounds on the lowest mass eigenvalue in these two special cases

read
m2

hyper ≤ −V − 1
3
|m3/2|2 ,

m2
vector ≤ −2V .

(4.1)

Similar tachyonic modes seem to be endemic also in N > 2 theories; see for instance

refs. [20].

Another interesting information one can deduce from the stability bounds (4.1)

concerns dS stationary points. For example they could be of potential interest for

achieving inflation. Note nevertheless that there will be at least one direction in field

space along which |V ′′|/V ∼ 1, implying that the conditions for slow-roll inflation

are never satisfied.

In more general situations of N = 2 supergravity theories involving both vector

and hypermultiplets, as well as non-Abelian gauging, some examples of models

giving rise to dS spaces are known to exist [8]. It is clear that an analysis of the

same type as the one presented here for these more general situations would also

be very valuable, as it could provide some insights on what are the really necessary

ingredients to construct models admitting a stable dS vacuum [7]. For instance,

it is obvious that non-Abelian gaugings help, since then a new positive-definite

term arises in the scalar potential. But even for Abelian gaugings, combining vector

multiplets with hypermultiplets may be sufficient to be able to avoid tachyons, since

in that case the scalar manifold is the product of a quaternionic-Kähler and special-

Kähler manifolds, which as a whole can have a lower sectional curvature than any

of its two components. Of course, even after having understood more precisely

the conditions for achieving dS vacua within N = 2 supergravity effective theories,

another interesting question would be whether these can be realized in string theory.
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Appendix

A Supertrace sum rule on the masses

In this Appendix we report some details on the computation of the supertrace of

the square mass operator for all the fields. This quantity is of some interest, since

it controls the leading quadratic divergences arising at the one loop level when

supersymmetry is spontaneously broken, at least in the case of a flat Minkowski

space with vanishing cosmological constant. We will first shortly review the know

case of N = 1 theories and then present the same computation for N = 2 models.

A.1 N = 1 theories with chiral multiplets

Using the expressions given in Section 2.1 for the mass matrices of the various fields,

one finds that at a generic stationary point with any allowed cosmological constant:

tr[m2
0] = 2∇iNk∇iN̄k − 2RīN̄

iN ̄ + 2(n− 1)N̄kNk − 4n|L|2 , (A.1)

tr[m2
1/2] = ∇iNk∇iN̄k − 8

3
N̄kNk + 4

9
(N̄kNk)

2|L|−2 , (A.2)

tr[m2
3/2] = |L|2 . (A.3)

It follows that: [21]

str[m2] = tr[m2
0] − 2 tr[m2

1/2] − 4 tr[m2
3/2]

= 2(n− 1)m2
3/2 + 2RīN̄

iN ̄ + 2(n− 1)V − 8
9
V 2|m3/2|−2 .

(A.4)

In terms of γ = V/(3|m3/2|2), this finally gives:

str[m2] =
[

2(n− 1) + 6(n− 1)γ − 8γ2
]

|m3/2|2 + 2RīN̄
iN ̄ . (A.5)

Note that for Kähler manifolds that happen to be also Einstein spaces, with a

Ricci tensor of the form

Rī = rgī , (A.6)

the formula simplifies as follows:

str[m2] =
[

2(n− 1 + 3r) + 6(n− 1 + r)γ − 8γ2
]

|m3/2|2 . (A.7)

Note finally that for supersymmetric vacua with γ = −1 one finds:

str[m2] = −4(n+ 1)|m3/2|2 . (A.8)

20



A.2 N = 2 theories with hypermultiplets

Using the expressions derived in Section 3.1 for the mass matrices of the various

fields, as well as eq. (3.8), one can compute the traces of the square mass for each

field at a generic stationary point of the scalar potential. After some algebra, and

repeated use of the various identities listed at the beginning of Section 3, we find

the following results:

tr[m2
0] = 4∇ukv∇ukv + 4(2n− 5)kuku − 12nP xP x , (A.9)

tr[m2
1/2] = 2∇ukv∇ukv − 16kuku − 2nP xP x + 128

9
(kuku)

2(P xP x)−1 , (A.10)

tr[m2
1] = 4kuku , (A.11)

tr[m2
3/2] = 2P xP x . (A.12)

Using these result, the supertrace is found to be:

str[m2] = tr[m2
0] − 2 tr[m2

1/2] + 3 tr[m2
1] − 4 tr[m2

3/2]

= −
(

2n + 6
)

|m3/2|2 +
(

2n− 14
3

)

V − 16
9
V 2|m3/2|−2 .

(A.13)

In terms of γ = V/(3|m3/2|2), this finally reads:

str[m2] =
[

−
(

2n + 6
)

+
(

6n− 14
)

γ − 16γ2
]

|m3/2|2 . (A.14)

Note that for supersymmetric vacua with γ = −1 one finds:

str[m2] = −8(n + 1) |m3/2|2 . (A.15)

B Curvature conventions

In this Appendix, we summarize our conventions for the curvature tensor and the

sectional curvature, first for generic real Riemann manifolds and then for complex

Kähler manifolds.

B.1 Riemann manifolds

For the geometry of a generic real Riemann manifold, we use the following conven-

tions. Denoting the components of the metric with guv, the Christoffel connection

is Γk
uv = 1

2
gkl

(

∂ugvl + ∂vgul − ∂lguv

)

. The Riemann tensor is defined as

Ru
vkl = ∂kΓ

u
vl − ∂lΓ

u
vk + Γi

ksΓ
s
jl − Γi

lsΓ
s
jk . (B.1)

The Ricci curvature tensor is then:

Rij = Rs
isj , (B.2)
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and finally the scalar curvature is given by:

R = Rs
s . (B.3)

The ordinary covariant derivatives on vectors is defined as DuVv = ∂uVv − Γs
uvVs,

and the commutator of two of them gives:
[

Du,Dv

]

Vk = R l
uvk Vl . (B.4)

The sectional curvature in a plane defined by two orthogonal vectors Au and Bv,

with AuBu = 0, is finally defined as:

R(A,B) =
RuvklA

uBvAkBl

ArAr BsBs

. (B.5)

B.2 Kähler manifolds

For complex Kähler manifolds admitting a globally-defined complex structure Juv,

it is convenient to switch to complex coordinates in which this is block diagonal

with values ±i. The Hermitian metric has non-vanishing components gī and gı̄j,

and satisfies the conditions ∂igjk̄ = ∂jgik̄ and ∂ı̄ḡk = ∂̄gı̄k. It follows then that

the non-vanishing components of the Christoffel connection are Γk
ij = gkl̄∂igjl̄ and

Γk̄
ı̄̄ = gk̄l∂ı̄ḡl. The non-vanishing components of the Riemann tensor are then:

Rīkl̄ = ∂i∂̄gkl̄ + gr̄s∂igkr̄∂̄gl̄s , (B.6)

Rı̄jkl̄ = −Rjı̄kl̄ , Rīk̄l = −Rīlk̄ , Rı̄jk̄l = Rjı̄lk̄ . (B.7)

The Riemann tensor has in this case the additional property of being symmetric

under the exchange of indices of the same holomophic or antiholomorphic type:

Rīkl̄ = Rk̄il̄ = Ril̄k̄ = Rkl̄ī. The Ricci curvature tensor has then as only non-

vanishing components

Rī = −grs̄Rrs̄ī , Rı̄j = Rjı̄ . (B.8)

Finally, the scalar curvature is given by:

R = 2grs̄Rrs̄ . (B.9)

The ordinary covariant derivatives on holomorphic vectors (similar formulae hold

for antiholomorphic vectors) read DiVj = ∂iVj − Γs
ijVs and Dı̄Vj = ∂ı̄Vj , and the

commutator of two of them gives:
[

Di,D̄

]

Vk = R l
īk Vl . (B.10)

The holomorphic sectional curvature in a plane defined by a vector and its conjugate

under the complex structure, defining in complex coordinates a holomorphic vector

Zi and its antiholomorphic counterpart Zı̄, is finally given by:

R(Z) = −Rīkl̄Z
iZ ̄ZkZ l̄

(ZpZp)2
. (B.11)
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