381 research outputs found

    Molecular Feshbach dissociation as a source for motionally entangled atoms

    Full text link
    We describe the dissociation of a diatomic Feshbach molecule due to a time-varying external magnetic field in a realistic trap and guide setting. An analytic expression for the asymptotic state of the two ultracold atoms is derived, which can serve as a basis for the analysis of dissociation protocols to generate motionally entangled states. For instance, the gradual dissociation by sequences of magnetic field pulses may delocalize the atoms into macroscopically distinct wave packets, whose motional entanglement can be addressed interferometrically. The established relation between the applied magnetic field pulse and the generated dissociation state reveals that square-shaped magnetic field pulses minimize the momentum spread of the atoms. This is required to control the detrimental influence of dispersion in a recently proposed experiment to perform a Bell test in the motion of the two atoms [C. Gneiting and K. Hornberger, Phys. Rev. Lett. 101, 260503 (2008)].Comment: 12 pages, 3 figures; corresponds to published versio

    Stochastic models which separate fractal dimension and Hurst effect

    Get PDF
    Fractal behavior and long-range dependence have been observed in an astonishing number of physical systems. Either phenomenon has been modeled by self-similar random functions, thereby implying a linear relationship between fractal dimension, a measure of roughness, and Hurst coefficient, a measure of long-memory dependence. This letter introduces simple stochastic models which allow for any combination of fractal dimension and Hurst exponent. We synthesize images from these models, with arbitrary fractal properties and power-law correlations, and propose a test for self-similarity.Comment: 8 pages, 2 figure

    Entangling the free motion of a particle pair: an experimental scenario

    Full text link
    The concept of dissociation-time entanglement provides a means of manifesting non-classical correlations in the motional state of two counter-propagating atoms. In this article, we discuss in detail the requirements for a specific experimental implementation, which is based on the Feshbach dissociation of a molecular Bose-Einstein condensate of fermionic lithium. A sequence of two magnetic field pulses serves to delocalize both of the dissociation products into a superposition of consecutive wave packets, which are separated by a macroscopic distance. This allows to address them separately in a switched Mach-Zehnder configuration, permitting to conduct a Bell experiment with simple position measurements. We analyze the expected form of the two-particle wave function in a concrete experimental setup that uses lasers as atom guides. Assuming viable experimental parameters the setup is shown to be capable of violating a Bell inequality.Comment: 9 pages, 3 figures; corresponds to published versio

    Criteria of efficiency for conformal prediction

    Get PDF
    We study optimal conformity measures for various criteria of efficiency of classification in an idealised setting. This leads to an important class of criteria of efficiency that we call probabilistic; it turns out that the most standard criteria of efficiency used in literature on conformal prediction are not probabilistic unless the problem of classification is binary. We consider both unconditional and label-conditional conformal prediction.Comment: 31 page

    Conditional Sampling for Max-Stable Processes with a Mixed Moving Maxima Representation

    Full text link
    This paper deals with the question of conditional sampling and prediction for the class of stationary max-stable processes which allow for a mixed moving maxima representation. We develop an exact procedure for conditional sampling using the Poisson point process structure of such processes. For explicit calculations we restrict ourselves to the one-dimensional case and use a finite number of shape functions satisfying some regularity conditions. For more general shape functions approximation techniques are presented. Our algorithm is applied to the Smith process and the Brown-Resnick process. Finally, we compare our computational results to other approaches. Here, the algorithm for Gaussian processes with transformed marginals turns out to be surprisingly competitive.Comment: 35 pages; version accepted for publication in Extremes. The final publication is available at http://link.springer.co

    A simple method for finite range decomposition of quadratic forms and Gaussian fields

    Full text link
    We present a simple method to decompose the Green forms corresponding to a large class of interesting symmetric Dirichlet forms into integrals over symmetric positive semi-definite and finite range (properly supported) forms that are smoother than the original Green form. This result gives rise to multiscale decompositions of the associated Gaussian free fields into sums of independent smoother Gaussian fields with spatially localized correlations. Our method makes use of the finite propagation speed of the wave equation and Chebyshev polynomials. It improves several existing results and also gives simpler proofs.Comment: minor correction for t<

    Non-classical correlations from dissociation time entanglement

    Full text link
    We discuss a strongly entangled two-particle state of motion that emerges naturally from the double-pulse dissociation of a diatomic molecule. This state, which may be called dissociation-time entangled, permits the unambiguous demonstration of non-classical correlations by violating a Bell inequality based on switched single particle interferometry and only position measurements. We apply time-dependent scattering theory to determine the detrimental effect of dispersion. The proposed setup brings into reach the possibility of establishing non-classical correlations with respect to system properties that are truly macroscopically distinct.Comment: 8 pages, 2 figures; corresponds to published versio
    • …
    corecore