17 research outputs found

    Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco

    Get PDF
    The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses

    A stress-associated protein containing A20/AN1 zing-finger domains expressed in Medicago truncatula seeds

    Get PDF
    MtSAP1 (Medicago truncatula stress-associated protein 1) was revealed as a down-regulated gene by suppressive subtractive hybridization between two mRNA populations of embryo axes harvested before and after radicle emergence. MtSAP1 is the first gene encoding a SAP with A20 and AN1 zinc-finger domains characterized in M. truncatula. MtSAP1 protein shares 54% and 62% homology with AtSAP7 (Arabidopsis thaliana) and OsiSAP8 (Oryza sativa) respectively, with in particular a strong homology in the A20 and AN1 conserved domains. MtSAP1 gene expression increased in the embryos during the acquisition of tolerance to desiccation, reached its maximum in dry seed and decreased dramatically during the first hours of imbibition. Abiotic stresses (cold and hypoxia), abscisic acid and desiccation treatments induced MtSAP1 gene expression and protein accumulation in embryo axis, while mild drought stress did not affect significantly its expression. This profile of expression along with the presence of anaerobic response elements and ABRE sequences in the upstream region of the gene is consistent with a role of MtSAP1 in the tolerance of low oxygen availability and desiccation during late stages of seed maturation. Silencing of MtSAP1 by RNA interference (RNAi) showed that the function of the encoded protein is required for adequate accumulation of storage globulin proteins, vicilin and legumin, and for the development of embryos able to achieve successful germination

    Australia's National Bowel Cancer Screening Program: does it work for Indigenous Australians?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite a lower incidence of bowel cancer overall, Indigenous Australians are more likely to be diagnosed at an advanced stage when prognosis is poor. Bowel cancer screening is an effective means of reducing incidence and mortality from bowel cancer through early identification and prompt treatment. In 2006, Australia began rolling out a population-based National Bowel Cancer Screening Program (NBCSP) using the Faecal Occult Blood Test. Initial evaluation of the program revealed substantial disparities in bowel cancer screening uptake with Indigenous Australians significantly less likely to participate in screening than the non-Indigenous population.</p> <p>This paper critically reviews characteristics of the program which may contribute to the discrepancy in screening uptake, and includes an analysis of organisational, structural, and socio-cultural barriers that play a part in the poorer participation of Indigenous and other disadvantaged and minority groups.</p> <p>Methods</p> <p>A search was undertaken of peer-reviewed journal articles, government reports, and other grey literature using electronic databases and citation snowballing. Articles were critically evaluated for relevance to themes that addressed the research questions.</p> <p>Results</p> <p>The NBCSP is not reaching many Indigenous Australians in the target group, with factors contributing to sub-optimal participation including how participants are selected, the way the screening kit is distributed, the nature of the test and comprehensiveness of its contents, cultural perceptions of cancer and prevailing low levels of knowledge and awareness of bowel cancer and the importance of screening.</p> <p>Conclusions</p> <p>Our findings suggest that the population-based approach to implementing bowel cancer screening to the Australian population unintentionally excludes vulnerable minorities, particularly Indigenous and other culturally and linguistically diverse groups. This potentially contributes to exacerbating the already widening disparities in cancer outcomes that exist among Indigenous Australians. Modifications to the program are recommended to facilitate access and participation by Indigenous and other minority populations. Further research is also needed to understand the needs and social and cultural sensitivities of these groups around cancer screening and inform alternative approaches to bowel cancer screening.</p

    Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention

    Get PDF

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees

    Get PDF
    The radial growth of plant stem is based on the development of cribro-vascular cambium tissues. It affects the transport efficiency of water, mineral nutrients and photoassimilates and, ultimately, also plant height. The rate of cambial cell divisions for the assembly of new xylem and phloem tissue primordia and the rate of differentiation of the primordia into mature tissues determine the amount of biomass produced and, in the case of woody species, the wood quality. These complex physiological processes proceed at a rate which depends on several factors, acting at various levels: growth regulators, resource availability and environmental factors. Several hormonal signals and, more recently, further regulatory molecules, have been shown to be involved in the induction and maintenance of cambium and the formation of secondary vascular tissues. The control of xylem cell patterning is of particular interest, because it determines the diameter of xylem vessels, which is central to the efficiency of water and nutrient transport from roots to leaves through the stem and may strongly influence the growth in height of the tree. Increasing scientific evidence have proved the role of other hormones in cambial cell activities and the study of the hormonal signals and their crosstalking in cambial cells may foster our understanding of the dynamics of xylogenesis and of the mechanism of vessel size control along the stem. In this article, the role of the hormonal signals involved in the control of cambium and xylem development in trees and their crosstalking are reviewed
    corecore