2,987 research outputs found

    Dynamics of Entanglement Transfer Through Multipartite Dissipative Systems

    Full text link
    We study the dynamics of entanglement transfer in a system composed of two initially correlated three-level atoms, each located in a cavity interacting with its own reservoir. Instead of tracing out reservoir modes to describe the dynamics using the master equation approach, we consider explicitly the dynamics of the reservoirs. In this situation, we show that the entanglement is completely transferred from atoms to reservoirs. Although the cavities mediate this entanglement transfer, we show that under certain conditions, no entanglement is found in cavities throughout the dynamics. Considering the entanglement dynamics of interacting and non-interacting bipartite subsystems, we found time windows where the entanglement can only flow through interacting subsystems, depending on the system parameters.Comment: 8 pages, 11 figures, publishe in Physical Review

    Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states

    Full text link
    We consider a system composed of a two-level system (i.e. a qubit) and a harmonic oscillator in the ultrastrong-coupling regime, where the coupling strength is comparable to the qubit and oscillator energy scales. Special emphasis is placed on the possibility of preparing nonclassical states in this system. These nonclassical states include squeezed states, Schrodinger-cat states and entangled states. We start by comparing the predictions of a number of analytical methods that can be used to describe the system under different assumptions, thus analyzing the properties of the system in various parameter regimes. We then examine the ground state of the system and analyze its nonclassical properties. We finally discuss some questions related to the possible experimental observation of the nonclassical states and the effect of decoherence.Comment: 19 pages (two-column), 11 figure

    Decoherence in a system of many two--level atoms

    Full text link
    I show that the decoherence in a system of NN degenerate two--level atoms interacting with a bosonic heat bath is for any number of atoms NN governed by a generalized Hamming distance (called ``decoherence metric'') between the superposed quantum states, with a time--dependent metric tensor that is specific for the heat bath.The decoherence metric allows for the complete characterization of the decoherence of all possible superpositions of many-particle states, and can be applied to minimize the over-all decoherence in a quantum memory. For qubits which are far apart, the decoherence is given by a function describing single-qubit decoherence times the standard Hamming distance. I apply the theory to cold atoms in an optical lattice interacting with black body radiation.Comment: replaced with published versio

    Analytical solution to position dependent mass Schr\"odinger equation

    Full text link
    Using a recently developed technique to solve Schr\"odinger equation for constant mass, we studied the regime in which mass varies with position i.e position dependent mass Schr\"odinger equation(PDMSE). We obtained an analytical solution for the PDMSE and applied our approach to study a position dependent mass m(x)m(x) particle scattered by a potential V(x)\mathcal{V}(x). We also studied the structural analogy between PDMSE and two-level atomic system interacting with a classical field.Comment: 5 pages, 4 figure

    Heat Capacity Mapping Mission

    Get PDF
    The Tasman Front was delineated by airborne expendable bathythermograph survey; and an Heat Capacity Mapping Mission (HCMM) IR image on the same day shows the same principal features as determined from ground-truth. It is clear that digital enhancement of HCMM images is necessary to map ocean surface temperatures and when done, the Tasman Front and other oceanographic features can be mapped by this method, even through considerable scattered cloud cover

    Repassivation of Pits in Aluminum Thin Films

    Get PDF
    The effect of metal film thickness on repassivation of pits in sputter-deposited Al thin films was investigated in chloride solutions. The repassivation potential and the critical current density, which is the pit current density below which pits stop growing, were determined for pits in Al thin films ranging from 100 Çș to 43 ÎŒm in thickness. The repassivation potential first decreased as thickness increased from 100 to 4350 Çș, and then increased as the film thickness increased further. This behavior was found to be a consequence of the pit current-density/potential relationship. The critical current density, a more informative parameter, decreased for increasing metal film thickness, even when the repassivation potential increased. The critical current density is the minimum current density needed to maintain the critical pit environment and prevent repassivation. The repassivation potential for a given metal film thickness is the potential at which the pit current density drops below the critical value. Mass-transport and ohmic resistance both increase as the metal film thickness increases, but the former enhances pit stability and the latter destabilizes pitting in this system. Pit repassivation, and thus stability, are strongly influenced by mass-transport considerations for pits in very thin pits, even though dissolution at low potentials is not under pure mass-transport control. Ohmic effects become increasingly important as the film thickness increases.J.R.S. was supported by the NASA-Langley Research Center La^2ST Program and the NSF under DMR-9357463

    Signatures of the Unruh effect from electrons accelerated by ultra-strong laser fields

    Full text link
    We calculate the radiation resulting from the Unruh effect for strongly accelerated electrons and show that the photons are created in pairs whose polarizations are maximally entangled. Apart from the photon statistics, this quantum radiation can further be discriminated from the classical (Larmor) radiation via the different spectral and angular distributions. The signatures of the Unruh effect become significant if the external electromagnetic field accelerating the electrons is not too far below the Schwinger limit and might be observable with future facilities. Finally, the corrections due to the birefringent nature of the QED vacuum at such ultra-high fields are discussed. PACS: 04.62.+v, 12.20.Fv, 41.60.-m, 42.25.Lc.Comment: 4 pages, 1 figur

    Production of a sterile species via active-sterile mixing: an exactly solvable model

    Full text link
    The production of a sterile species via active-sterile mixing in a thermal medium is studied in an exactly solvable model. The \emph{exact} time evolution of the sterile distribution function is determined by the dispersion relations and damping rates Γ1,2\Gamma_{1,2} for the quasiparticle modes. These depend on \wtg = \Gamma_{aa}/2\Delta E, with Γaa\Gamma_{aa} the interaction rate of the active species in absence of mixing and ΔE\Delta E the oscillation frequency in the medium without damping. \wtg \ll1,\wtg \gg 1 describe the weak and strong damping limits respectively. For \wtg\ll1, \Gamma_1 = \Gamma_{aa}\cos^2\tm ; \Gamma_{2}=\Gamma_{aa}\sin^2\tm where \tm is the mixing angle in the medium and the sterile distribution function \emph{does not} obey a simple rate equation. For \wtg \gg 1, Γ1=Γaa\Gamma_1= \Gamma_{aa} and \Gamma_2 = \Gamma_{aa} \sin^22\tm/4\wtg^2, is the sterile production rate. In this regime sterile production is suppressed and the oscillation frequency \emph{vanishes} at an MSW resonance, with a breakdown of adiabaticity. These are consequences of quantum Zeno suppression. For active neutrinos with standard model interactions the strong damping limit is \emph{only} available near an MSW resonance \emph{if} sin⁥Ξâ‰Čαw\sin\theta \lesssim \alpha_w with Ξ\theta the vacuum mixing angle. The full set of quantum kinetic equations for sterile production for arbitrary \wtg are obtained from the quantum master equation. Cosmological resonant sterile neutrino production is quantum Zeno suppressed relieving potential uncertainties associated with the QCD phase transition.Comment: To appear in Phys. Rev.

    Dynamics of the excitations of a quantum dot in a microcavity

    Full text link
    We study the dynamics of a quantum dot embedded in a three-dimensional microcavity in the strong coupling regime in which the quantum dot exciton has an energy close to the frequency of a confined cavity mode. Under the continuous pumping of the system, confined electron and hole can recombine either by spontaneous emission through a leaky mode or by stimulated emission of a cavity mode that can escape from the cavity. The numerical integration of a master equation including all these effects gives the dynamics of the density matrix. By using the quantum regression theorem, we compute the first and second order coherence functions required to calculate the photon statistics and the spectrum of the emitted light. Our main result is the determination of a range of parameters in which a state of cavity modes with poissonian or sub-poissonian (non-classical) statistics can be built up within the microcavity. Depending on the relative values of pumping and rate of stimulated emission, either one or two peaks close to the excitation energy of the dot and/or to the natural frequency of the cavity are observed in the emission spectrum. The physics behind these results is discussed

    Breakdown of the few-level approximation in collective systems

    Get PDF
    The validity of the few-level approximation in dipole-dipole interacting collective systems is discussed. As example system, we study the archetype case of two dipole-dipole interacting atoms, each modelled by two complete sets of angular momentum multiplets. We establish the breakdown of the few-level approximation by first proving the intuitive result that the dipole-dipole induced energy shifts between collective two-atom states depend on the length of the vector connecting the atoms, but not on its orientation, if complete and degenerate multiplets are considered. A careful analysis of our findings reveals that the simplification of the atomic level scheme by artificially omitting Zeeman sublevels in a few-level approximation generally leads to incorrect predictions. We find that this breakdown can be traced back to the dipole-dipole coupling of transitions with orthogonal dipole moments. Our interpretation enables us to identify special geometries in which partial few-level approximations to two- or three-level systems are valid
    • 

    corecore