6,761 research outputs found
Spinning nanorods - active optical manipulation of semiconductor nanorods using polarised light
In this Letter we show how a single beam optical trap offers the means for
three-dimensional manipulation of semiconductor nanorods in solution.
Furthermore rotation of the direction of the electric field provides control
over the orientation of the nanorods, which is shown by polarisation analysis
of two photon induced fluorescence. Statistics over tens of trapped
agglomerates reveal a correlation between the measured degree of polarisation,
the trap stiffness and the intensity of the emitted light, confirming that we
are approaching the single particle limit.Comment: 7 pages, 4 figure
Saturated gain spectrum of VECSELs determined by transient measurement of lasing onset
We describe time-resolved measurements of the evolution of the spectrum of radiation emitted by an optically-pumped continuous-wave InGaAs-GaAs quantum well laser, recorded as lasing builds up from noise to steady state. We extract a fitting parameter corresponding to the gain dispersion of the parabolic spectrum equal to ?79 ± 30 fs2 and ?36 ± 6 fs2 for a resonant and anti-resonant structure, respectively. Furthermore the recorded evolution of the spectrum allows for the calculation of an effective FWHM gain bandwidth for each structure, of 11 nm and 18 nm, respectively
Electron-vibration interaction in transport through atomic gold wires
We calculate the effect of electron-vibration coupling on conduction through
atomic gold wires, which was measured in the experiments of Agra\"it et al.
[Phys. Rev. Lett. 88, 216803 (2002)]. The vibrational modes, the coupling
constants, and the inelastic transport are all calculated using a tight-binding
parametrization and the non-equilibrium Green function formalism. The
electron-vibration coupling gives rise to small drops in the conductance at
voltages corresponding to energies of some of the vibrational modes. We study
systematically how the position and height of these steps vary as a linear wire
is stretched and more atoms are added to it, and find a good agreement with the
experiments. We also consider two different types of geometries, which are
found to yield qualitatively similar results. In contrast to previous
calculations, we find that typically there are several close-lying drops due to
different longitudinal modes. In the experiments, only a single drop is usually
visible, but its width is too large to be accounted for by temperature.
Therefore, to explain the experimental results, we find it necessary to
introduce a finite broadening to the vibrational modes, which makes the
separate drops merge into a single, wide one. In addition, we predict how the
signatures of vibrational modes in the conductance curves differ between linear
and zigzag-type wires.Comment: 19 pages, 12 figure
Systematic analysis of funding awarded for mycology research to institutions in the UK, 1997–2010
Objectives: Fungal infections cause significant global morbidity and mortality. We have previously described the UK investments in global infectious disease research, and here our objective is to describe the investments awarded to UK institutions for mycology research and outline potential funding gaps in the UK portfolio. Design: Systematic analysis. Setting: UK institutions carrying out infectious disease research. Primary and secondary outcome measures Primary outcome is the amount of funding and number of studies related to mycology research. Secondary outcomes are describing the investments made to specific fungal pathogens and diseases, and also the type of science along the R&D value chain. Methods: We systematically searched databases and websites for information on research studies from public and philanthropic funding institutions awarded between 1997 and 2010, and highlighted the mycology-related projects. Results: Of 6165 funded studies, we identified 171 studies related to mycology (total investment £48.4 million, 1.9% of all infection research, with mean annual funding £3.5 million). Studies related to global health represented 5.1% of this funding (£2.4 million, compared with 35.6% of all infectious diseases). Leading funders were the Biotechnology and Biological Sciences Research Council (£14.8 million, 30.5%) and Wellcome Trust (£12.0 million, 24.7%). Preclinical studies received £42.2 million (87.3%), with clinical trials, intervention studies and implementation research in total receiving £6.2 million (12.7%). By institution, University of Aberdeen received most funding (£16.9 million, 35%). Studies investigating antifungal resistance received £1.5 million (3.2%). Conclusions: There is little translation of preclinical research into clinical trials or implementation research in spite of substantial disease burden globally, and there are few UK institutions that carry out significant quantities of mycology research of any type. In the context of global health and the burden of disease in low-income countries, more investment is required for mycology research
Glassy dynamics in granular compaction
Two models are presented to study the influence of slow dynamics on granular
compaction. It is found in both cases that high values of packing fraction are
achieved only by the slow relaxation of cooperative structures. Ongoing work to
study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter,
proceedings of the Trieste workshop on 'Unifying concepts in glass physics
Entangled nematic disclinations using multi-particle collision dynamics
Colloids dispersed in nematic liquid crystals form topological composites in which colloid-associated defects mediate interactions while adhering to fundamental topological constraints. Better realising the promise of such materials requires numerical methods that model nematic inclusions in dynamic and complex scenarios. We employ a mesoscale approach for simulating colloids as mobile surfaces embedded in a fluctuating nematohydrodynamic medium to study the kinetics of colloidal entanglement. In addition to reproducing far-field interactions, topological properties of disclination loops are resolved to reveal their metastable states and topological transitions during relaxation towards ground state. The intrinsic hydrodynamic fluctuations distinguish formerly unexplored far-from-equilibrium disclination states, including configurations with localised positive winding profiles. The adaptability and precision of this numerical approach offers promising avenues for studying the dynamics of colloids and topological defects in designed and out-of-equilibrium situations
Magellan: Preliminary description of Venus surface geologic units
Observations from approximately one-half of the Magellan nominal eight-month mission to map Venus are summarized. Preliminary compilation of initial geologic observations of the planet reveals a surface dominated by plains that are characterized by extensive and intensive volcanism and tectonic deformation. Four broad categories of units have been identified: plains units, linear belts, surficial units, and terrain units
Inelastic transport theory from first-principles: methodology and applications for nanoscale devices
We describe a first-principles method for calculating electronic structure,
vibrational modes and frequencies, electron-phonon couplings, and inelastic
electron transport properties of an atomic-scale device bridging two metallic
contacts under nonequilibrium conditions. The method extends the
density-functional codes SIESTA and TranSIESTA that use atomic basis sets. The
inelastic conductance characteristics are calculated using the nonequilibrium
Green's function formalism, and the electron-phonon interaction is addressed
with perturbation theory up to the level of the self-consistent Born
approximation. While these calculations often are computationally demanding, we
show how they can be approximated by a simple and efficient lowest order
expansion. Our method also addresses effects of energy dissipation and local
heating of the junction via detailed calculations of the power flow. We
demonstrate the developed procedures by considering inelastic transport through
atomic gold wires of various lengths, thereby extending the results presented
in [Frederiksen et al., Phys. Rev. Lett. 93, 256601 (2004)]. To illustrate that
the method applies more generally to molecular devices, we also calculate the
inelastic current through different hydrocarbon molecules between gold
electrodes. Both for the wires and the molecules our theory is in quantitative
agreement with experiments, and characterizes the system-specific mode
selectivity and local heating.Comment: 24 pages, 17 figure
Force-extension relation of cross-linked anisotropic polymer networks
Cross-linked polymer networks with orientational order constitute a wide
class of soft materials and are relevant to biological systems (e.g., F-actin
bundles). We analytically study the nonlinear force-extension relation of an
array of parallel-aligned, strongly stretched semiflexible polymers with random
cross-links. In the strong stretching limit, the effect of the cross-links is
purely entropic, independent of the bending rigidity of the chains. Cross-links
enhance the differential stretching stiffness of the bundle. For hard
cross-links, the cross-link contribution to the force-extension relation scales
inversely proportional to the force. Its dependence on the cross-link density,
close to the gelation transition, is the same as that of the shear modulus. The
qualitative behavior is captured by a toy model of two chains with a single
cross-link in the middle.Comment: 7 pages, 4 figure
Strain-controlled criticality governs the nonlinear mechanics of fibre networks
Disordered fibrous networks are ubiquitous in nature as major structural
components of living cells and tissues. The mechanical stability of networks
generally depends on the degree of connectivity: only when the average number
of connections between nodes exceeds the isostatic threshold are networks
stable (Maxwell, J. C., Philosophical Magazine 27, 294 (1864)). Upon increasing
the connectivity through this point, such networks undergo a mechanical phase
transition from a floppy to a rigid phase. However, even sub-isostatic networks
become rigid when subjected to sufficiently large deformations. To study this
strain-controlled transition, we perform a combination of computational
modeling of fibre networks and experiments on networks of type I collagen
fibers, which are crucial for the integrity of biological tissues. We show
theoretically that the development of rigidity is characterized by a
strain-controlled continuous phase transition with signatures of criticality.
Our experiments demonstrate mechanical properties consistent with our model,
including the predicted critical exponents. We show that the nonlinear
mechanics of collagen networks can be quantitatively captured by the
predictions of scaling theory for the strain-controlled critical behavior over
a wide range of network concentrations and strains up to failure of the
material
- …