1,598 research outputs found

    Empiricism and stochastics in cellular automaton modeling of urban land use dynamics

    Get PDF
    An increasing number of models for predicting land use change in regions of rapidurbanization are being proposed and built using ideas from cellular automata (CA)theory. Calibrating such models to real situations is highly problematic and to date,serious attention has not been focused on the estimation problem. In this paper, wepropose a structure for simulating urban change based on estimating land usetransitions using elementary probabilistic methods which draw their inspiration fromBayes' theory and the related ?weights of evidence? approach. These land use changeprobabilities drive a CA model ? DINAMICA ? conceived at the Center for RemoteSensing of the Federal University of Minas Gerais (CSR-UFMG). This is based on aneight cell Moore neighborhood approach implemented through empirical land useallocation algorithms. The model framework has been applied to a medium-size townin the west of São Paulo State, Bauru. We show how various socio-economic andinfrastructural factors can be combined using the weights of evidence approach whichenables us to predict the probability of changes between land use types in differentcells of the system. Different predictions for the town during the period 1979-1988were generated, and statistical validation was then conducted using a multipleresolution fitting procedure. These modeling experiments support the essential logicof adopting Bayesian empirical methods which synthesize various information aboutspatial infrastructure as the driver of urban land use change. This indicates therelevance of the approach for generating forecasts of growth for Brazilian citiesparticularly and for world-wide cities in general

    Active Learning Metamodels for ATM Simulation Modeling

    Get PDF
    Transportation systems are particularly prone to exhibiting overwhelming complexity on account of the numerous involved variables and their interrelationships, unknown stochastic phenomena, and ultimately human behavior. Simulation approaches are commonly used tools to describe and study such intricate real-world systems. Despite their obvious advantages,simulation models can still end up being quite complex themselves. The field of Air Traffic Management (ATM) modeling is no stranger to such concerns, as it traditionally involves laborious and systematic analyses built upon computationally heavy simulation models. This rather frequent shortcoming can be addressed by employing simulation metamodels combined with active learning strategies to approximate the input-output mappings inherently defined by the simulation models in an efficient way. In this work, we propose an exploration framework that integrates active learning and simulation metamodeling in a single unified approach to address recurrent computational bottlenecks typically associated with intense performance impact assessments within the field of ATM. Our methodology is designed to systematically explore the simulation input space in an efficient and self-guided manner, ultimately providing ATM practitioners with meaningful insights concerning the simulation models under study. Using a fully developed state-of-the-art ATM simulator and employing a Gaussian Process as a metamodel, we show that active learning is indeed capable of enhancing both the modeling and performances of simulation metamodeling by strategically avoiding redundant computer experiments and predicting simulation outputs values

    Active Learning for Air Traffic Management Simulation Metamodeling

    Get PDF
    Transportation systems are particularly prone to exhibiting overwhelming complexity on account of the numerous involved variables, corresponding interrelationships, and the unpredictability of human behavior. Simulation approaches are commonly used tools to describe and study such intricate real-world systems. Despite their clear advantages, these models can too suffer from high complexity and computational hindrances, especially when designed along with fine detail. The field of Air Traffic Management (ATM) modeling is no stranger to such concerns, as it traditionally involves exhausting and manual-driven intense analyses built upon computationally heavy simulation models. This rather frequent shortcoming can be addressed by employing simulation metamodels combined with active learning strategies to approximate, via fast functions, the input-output mappings inherently defined by the simulation models in an efficient way. In this work, we propose an exploration framework that integrates active learning and simulation metamodeling in a single unified approach to address recurrent computational bottlenecks typically associated with intense performance impact assessments within the field of ATM. Our methodology is designed to systematically explore the simulation input space in an efficient and self-guided manner, ultimately providing ATM practitioners with meaningful insights concerning the simulation models under study. Using a fully developed state-of-the-art ATM simulator and employing a Gaussian Process as a metamodel, we show that active learning is indeed capable of enhancing both the modeling and performances of simulation metamodeling by strategically avoiding redundant computer experiments and predicting simulation outputs values given a pre-specified input region

    Explainable Metamodels for ATM Performance Assessment

    Get PDF
    Fast-time simulation constitutes a well-known and long-established technique within the Air Traffic Management (ATM) community. However, it is often the case that simulation input and output spaces are underutilized, limiting the full understandability, transparency, and interpretability of the obtained results. In this paper, we propose a methodology that combines simulation metamodeling and SHapley Additive exPlanations (SHAP) values, aimed at uncovering the intricate hidden relationships among the input and output variables of a simulated ATM system in a rather practical way. Whereas metamodeling provides explicit functional approximations mimicking the behavior of the simulators, the SHAP-based analysis delivers a systematic framework for improving their explainability. We illustrate our approach using a state-of-the-art ATM simulator across two case studies in which two delay-centered performance metrics are analyzed. The results show that the proposed methodology can effectively make simulation and its results more explainable, facilitating the interpretation of the obtained emergent behavior, and additionally opening new opportunities towards novel performance assessment processes within the ATM research field

    Quantum Capacity Approaching Codes for the Detected-Jump Channel

    Full text link
    The quantum channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit-flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel
    corecore