5 research outputs found

    Legionellosis and Lung Abscesses: Contribution of Legionella Quantitative Real-Time PCR to an Adapted Followup

    Get PDF
    We report a case of severe Legionnaires' disease (LD) complicated by a lung abscess in an immunocompetent patient who required ECMO therapy and thoracic surgery. The results of repeated Legionella quantitative real-time PCR performed on both sera and respiratory samples correlated with the LD severity and the poor clinical outcome. Moreover, the PCR allowed for the detection of Legionella DNA in the lung abscess specimen, which was negative when cultured for Legionella. This case report provides a logical basis for further investigations to examine whether the Legionella quantitative PCR could improve the assessment of LD severity and constitute a prognostic marker

    Blood Gene Expression Predicts Bronchiolitis Obliterans Syndrome

    No full text
    Bronchiolitis obliterans syndrome (BOS), the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group), and 26 samples at or after BOS diagnosis (diagnosis group). An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group). We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1), T-cell leukemia/lymphoma protein 1A (TCL1A), and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01) and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS

    Airway microbiota signals anabolic and catabolic remodeling in the transplanted lung

    No full text
    corecore