4,640 research outputs found
The Hubble Sequence in Groups: The Birth of the Early-Type Galaxies
The physical mechanisms and timescales that determine the morphological
signatures and the quenching of star formation of typical (~L*) elliptical
galaxies are not well understood. To address this issue, we have simulated the
formation of a group of galaxies with sufficient resolution to track the
evolution of gas and stars inside about a dozen galaxy group members over
cosmic history. Galaxy groups, which harbor many elliptical galaxies in the
universe, are a particularly promising environment to investigate morphological
transformation and star formation quenching, due to their high galaxy density,
their relatively low velocity dispersion, and the presence of a hot intragroup
medium. Our simulation reproduces galaxies with different Hubble morphologies
and, consequently, enables us to study when and where the morphological
transformation of galaxies takes place. The simulation does not include
feedback from active galactic nuclei showing that it is not an essential
ingredient for producing quiescent, red elliptical galaxies in galaxy groups.
Ellipticals form, as suspected, through galaxy mergers. In contrast with what
has often been speculated, however, these mergers occur at z>1, before the
merging progenitors enter the virial radius of the group and before the group
is fully assembled. The simulation also shows that quenching of star formation
in the still star-forming elliptical galaxies lags behind their morphological
transformation, but, once started, is taking less than a billion years to
complete. As long envisaged the star formation quenching happens as the
galaxies approach and enter the finally assembled group, due to quenching of
gas accretion and (to a lesser degree) stripping. A similar sort is followed by
unmerged, disk galaxies, which, as they join the group, are turned into the
red-and-dead disks that abound in these environments.Comment: 12 pages, 12 Figures, 1 Table, accepted for publication in AP
Suppression of vortex channeling in meandered YBa2Cu3O7-d grain boundaries
We report on the in-plane magnetic field (H) dependence of the critical
current density (Jc) in meandered and planar single grain boundaries (GBs)
isolated in YBa2Cu3O7-d (YBCO) coated conductors. The Jc(H)properties of the
planar GB are consistent with those previously seen in single GBs of YBCO films
grown on SrTiO3 bi-crystals. In the straight boundary a characteristic flux
channeling regime when H is oriented near the GB plane, associated with a
reduced Jc, is seen. The meandered GB does not show vortex channeling since it
is not possible for a sufficient length of vortex line to lie within it.Comment: Submitted to AP
Role of "Intrinsic Charm" in Semi-Leptonic B-Meson Decays
We discuss the role of so-called "intrinsic-charm" operators in semi-leptonic
B-meson decays, which appear first at order 1/m_b^3 in the heavy quark
expansion. We show by explicit calculation that -- at scales mu <= m_c -- the
contributions from "intrinsic-charm" effects can be absorbed into
short-distance coefficient functions multiplying, for instance, the Darwin
term. Then, the only remnant of "intrinsic charm" are logarithms of the form
ln(m_c^2/m_b^2), which can be resummed by using renormalization-group
techniques. As long as the dynamics at the charm-quark scale is perturbative,
alpha_s(m_c) << 1, this implies that no additional non-perturbative matrix
elements aside from the Darwin and the spin-orbit term have to be introduced at
order 1/m_b^3. Hence, no sources for additional hadronic uncertainties have to
be taken into account. Similar arguments may be made for higher orders in the
1/m_b expansion.Comment: 14 pages, 1 figure, uses slashed.sty, slight modifications to match
published versio
Hyperatlas: A New Framework for Image Federation
Hyperatlas is an open standard intended to facilitate the large-scale
federation of image-based data. The subject of hyperatlas is the space of
sphere-to-plane projection mappings (the FITS-WCS information), and the
standard consists of coherent collections of these on which data can be
resampled and thereby federated with other image data. We hope for a
distributed effort that will produce a multi-faceted image atlas of the sky,
made by federating many different surveys at different wavelengths and
different times. We expect that hyperatlas-compliant imagery will be published
and discovered through an International Virtual Observatory Alliance (IVOA)
registry, and that grid-based services will emerge for the required resampling
and mosaicking.Comment: Published in ADASS XIII proceeding
Atlasmaker: A Grid-based Implementation of the Hyperatlas
The Atlasmaker project is using Grid technology, in combination with NVO
interoperability, to create new knowledge resources in astronomy. The product
is a multi-faceted, multi-dimensional, scientifically trusted image atlas of
the sky, made by federating many different surveys at different wavelengths,
times, resolutions, polarizations, etc. The Atlasmaker software does resampling
and mosaicking of image collections, and is well-suited to operate with the
Hyperatlas standard. Requests can be satisfied via on-demand computations or by
accessing a data cache. Computed data is stored in a distributed virtual file
system, such as the Storage Resource Broker (SRB). We expect these atlases to
be a new and powerful paradigm for knowledge extraction in astronomy, as well
as a magnificent way to build educational resources. The system is being
incorporated into the data analysis pipeline of the Palomar-Quest synoptic
survey, and is being used to generate all-sky atlases from the 2MASS, SDSS, and
DPOSS surveys for joint object detection.Comment: Published in the Proceedings of ADASS XI
Decays of and into vector and pseudoscalar meson and the pseudoscalar glueball- mixing
We introduce a parametrization scheme for where
the effects of SU(3) flavor symmetry breaking and doubly OZI-rule violation
(DOZI) can be parametrized by certain parameters with explicit physical
interpretations. This scheme can be used to clarify the glueball-
mixing within the pseudoscalar mesons. We also include the contributions from
the electromagnetic (EM) decays of and via
. Via study of the isospin violated
channels, such as , ,
and , reasonable constraints on the EM decay
contributions are obtained. With the up-to-date experimental data for
, and , etc, we arrive at a consistent description of the mentioned
processes with a minimal set of parameters. As a consequence, we find that
there exists an overall suppression of the form factors,
which sheds some light on the long-standing " puzzle". By determining
the glueball components inside the pseudoscalar and in
three different glueball- mixing schemes, we deduce that the lowest
pseudoscalar glueball, if exists, has rather small component, and it
makes the a preferable candidate for glueball.Comment: Revised version to appear on J. Phys. G; An error in the code was
corrected. There's slight change to the numerical results, while the
conclusion is intac
Insights into the naphthalenide-driven synthesis and reactivity of zerovalent iron nanoparticles
The chemical and thermal stability of alkali metal naphthalenides as powerful reducing agents are examined, including the type of alkali metal ([LiNaph] and [NaNaph]), the type of solvent (THF, DME), the temperature (−30 to +50 °C), and the time of storage (0 to 12 hours). The stability and concentration of [LiNaph]/[NaNaph] are quantified via UV-Vis spectroscopy and the Lambert–Beer law. As a result, the solutions of [LiNaph] in THF at low temperature turn out to be most stable. The decomposition can be related to a reductive polymerization of the solvent. The most stable [LiNaph] solutions in THF are exemplarily used to prepare reactive zerovalent iron nanoparticles, 2.3 ± 0.3 nm in size, by reduction of FeCl in THF. Finally, the influence of [LiNaph] and/or remains of the starting materials and solvents upon controlled oxidation of the as-prepared Fe(0) nanoparticles with iodine in the presence of selected ligands is evaluated and results in four novel, single-crystalline iron compounds ([FeI(MeOH)], ([MePPh][FeI(PhP)])·PPh·6CH, [FeI(PPh)], and [FeI(18-crown-6)]). Accordingly, reactive Fe(0) nanoparticles can be obtained in the liquid phase via [LiNaph]-driven reduction and instantaneously reacted to give new compounds without remains of the initial reduction (e.g. LiCl, naphthalene, and THF)
The eta-photon transition form factor
The eta-photon transition form factor is evaluated in a formalism based on a
phenomenological description at low values of the photon virtuality, and a
QCD-based description at high photon virtualities, matching at a scale
. The high photon virtuality description makes use of a Distribution
Amplitude calculated in the Nambu-Jona-Lasinio model with Pauli-Villars
regularization at the matching scale , and QCD evolution from
to higher values of . A good description of the available
data is obtained. The analysis indicates that the recent data from the BaBar
collaboration on pion and eta transition form factor can be well reproduced, if
a small contribution of twist three at the matching scale is
included.Comment: 14 pages, 3 figures, revised version, minor corrections, references
added, conclusions unchanged. Accepted for publication in Phys. Rev.
- …