158 research outputs found
Positronic lithium, an electronically stable Li-e ground state
Calculations of the positron-Li system were performed using the Stochastic
Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0
ground state. Unlike previous calculations of this system, the system was found
to be stable against dissociation into the Ps + Li channel with a binding
energy of 0.00217 Hartree and is therefore electronically stable. This is the
first instance of a rigorous calculation predicting that it is possible to
combine a positron with a neutral atom and form an electronically stable bound
state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let
Limits on the release of Rb isotopes from a zeolite based 83mKr calibration source for the XENON project
The isomer 83mKr with its half-life of 1.83 h is an ideal calibration source
for a liquid noble gas dark matter experiment like the XENON project. However,
the risk of contamination of the detector with traces of the much longer lived
mother isotop 83Rb (86.2 d half-life) has to be ruled out. In this work the
release of 83Rb atoms from a 1.8 MBq 83Rb source embedded in zeolite beads has
been investigated. To do so, a cryogenic trap has been connected to the source
for about 10 days, after which it was removed and probed for the strongest 83Rb
gamma-rays with an ultra-sensitive Germanium detector. No signal has been
found. The corresponding upper limit on the released 83Rb activity means that
the investigated type of source can be used in the XENON project and similar
low-background experiments as 83mKr generator without a significant risk of
contaminating the detector. The measurements also allow to set upper limits on
the possible release of the isotopes 84Rb and 86Rb, traces of which were
created alongside the production of 83Rb at the Rez cyclotron.Comment: 11 pages, 7 figures, submitted to Journal of Instrumentatio
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the
beta-electron energy spectrum near the endpoint of tritium beta-decay. An
integral energy analysis will be performed by an electro-static spectrometer
(Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a
volume of 1240 m^3, and a complex inner electrode system with about 120000
individual parts. The strong magnetic field that guides the beta-electrons is
provided by super-conducting solenoids at both ends of the spectrometer. Its
influence on turbo-molecular pumps and vacuum gauges had to be considered. A
system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter
strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out
at 300{\deg}C, and the performance of this system are presented in detail. The
vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is
demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start
at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure
mRNA-Seq Analysis of the Pseudoperonospora cubensis Transcriptome During Cucumber (Cucumis sativus L.) Infection
Pseudoperonospora cubensis, an oomycete, is the causal agent of cucurbit downy mildew, and is responsible for significant losses on cucurbit crops worldwide. While other oomycete plant pathogens have been extensively studied at the molecular level, Ps. cubensis and the molecular basis of its interaction with cucurbit hosts has not been well examined. Here, we present the first large-scale global gene expression analysis of Ps. cubensis infection of a susceptible Cucumis sativus cultivar, ‘Vlaspik’, and identification of genes with putative roles in infection, growth, and pathogenicity. Using high throughput whole transcriptome sequencing, we captured differential expression of 2383 Ps. cubensis genes in sporangia and at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi). Additionally, comparison of Ps. cubensis expression profiles with expression profiles from an infection time course of the oomycete pathogen Phytophthora infestans on Solanum tuberosum revealed similarities in expression patterns of 1,576–6,806 orthologous genes suggesting a substantial degree of overlap in molecular events in virulence between the biotrophic Ps. cubensis and the hemi-biotrophic P. infestans. Co-expression analyses identified distinct modules of Ps. cubensis genes that were representative of early, intermediate, and late infection stages. Collectively, these expression data have advanced our understanding of key molecular and genetic events in the virulence of Ps. cubensis and thus, provides a foundation for identifying mechanism(s) by which to engineer or effect resistance in the host
Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy
The Karlsruhe Tritium Neutrino (KATRIN) experiment aims at measuring the effective electron neutrino mass with a sensitivity of 0.2 eV/c, i.e., improving on previous measurements by an order of magnitude. Neutrino mass data taking with KATRIN commenced in early 2019, and after only a few weeks of data recording, analysis of these data showed the success of KATRIN, improving on the known neutrino mass limit by a factor of about two. This success very much could be ascribed to the fact that most of the system components met, or even surpassed, the required specifications during long-term operation. Here, we report on the performance of the laser Raman (LARA) monitoring system which provides continuous high-precision information on the gas composition injected into the experiment’s windowless gaseous tritium source (WGTS), specifically on its isotopic purity of tritium—one of the key parameters required in the derivation of the electron neutrino mass. The concentrations c for all six hydrogen isotopologues were monitored simultaneously, with a measurement precision for individual components of the order 10 or better throughout the complete KATRIN data taking campaigns to date. From these, the tritium purity, εT, is derived with precision of <10 and trueness of <3 × 10, being within and surpassing the actual requirements for KATRIN, respectively
New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs
We report on the direct cosmic relic neutrino background search from the
first two science runs of the KATRIN experiment in 2019. Beta-decay electrons
from a high-purity molecular tritium gas source are analyzed by a
high-resolution MAC-E filter around the kinematic endpoint at 18.57 keV. The
analysis is sensitive to a local relic neutrino overdensity of 9.7e10 (1.1e11)
at a 90% (95%) confidence level. A fit of the integrated electron spectrum over
a narrow interval around the kinematic endpoint accounting for relic neutrino
captures in the Tritium source reveals no significant overdensity. This work
improves the results obtained by the previous kinematic neutrino mass
experiments at Los Alamos and Troitsk. We furthermore update the projected
final sensitivity of the KATRIN experiment to <1e10 at 90% confidence level, by
relying on updated operational conditions.Comment: 7 pages, 7 figure
- …