9,786 research outputs found
Exact solution and interfacial tension of the six-vertex model with anti-periodic boundary conditions
We consider the six-vertex model with anti-periodic boundary conditions
across a finite strip. The row-to-row transfer matrix is diagonalised by the
`commuting transfer matrices' method. {}From the exact solution we obtain an
independent derivation of the interfacial tension of the six-vertex model in
the anti-ferroelectric phase. The nature of the corresponding integrable
boundary condition on the spin chain is also discussed.Comment: 18 pages, LaTeX with 1 PostScript figur
Ex-nihilo: Obstacles Surrounding Teaching the Standard Model
The model of the Big Bang is an integral part of the national curriculum for
England. Previous work (e.g. Baxter 1989) has shown that pupils often come into
education with many and varied prior misconceptions emanating from both
internal and external sources. Whilst virtually all of these misconceptions can
be remedied, there will remain (by its very nature) the obstacle of ex-nihilo,
as characterised by the question `how do you get something from nothing?' There
are two origins of this obstacle: conceptual (i.e. knowledge-based) and
cultural (e.g. deeply held religious viewpoints). The article shows how the
citizenship section of the national curriculum, coming `online' in England from
September 2002, presents a new opportunity for exploiting these.Comment: 6 pages. Accepted for publication in Physics E
Conformal invariance studies of the Baxter-Wu model and a related site-colouring problem
The partition function of the Baxter-Wu model is exactly related to the
generating function of a site-colouring problem on a hexagonal lattice. We
extend the original Bethe ansatz solution of these models in order to obtain
the eigenspectra of their transfer matrices in finite geometries and general
toroidal boundary conditions. The operator content of these models are studied
by solving numerically the Bethe-ansatz equations and by exploring conformal
invariance. Since the eigenspectra are calculated for large lattices, the
corrections to finite-size scaling are also calculated.Comment: 12 pages, latex, to appear in J. Phys. A: Gen. Mat
A Q-operator for the quantum transfer matrix
Baxter's Q-operator for the quantum transfer matrix of the XXZ spin-chain is
constructed employing the representation theory of quantum groups. The spectrum
of this Q-operator is discussed and novel functional relations which describe
the finite temperature regime of the XXZ spin-chain are derived. For
non-vanishing magnetic field the previously known Bethe ansatz equations can be
replaced by a system of quadratic equations which is an important advantage for
numerical studies. For vanishing magnetic field and rational coupling values it
is argued that the quantum transfer matrix exhibits a loop algebra symmetry
closely related to the one of the classical six-vertex transfer matrix at roots
of unity.Comment: 20 pages, v2: some minor style improvement
Critical and off-critical studies of the Baxter-Wu model with general toroidal boundary conditions
The operator content of the Baxter-Wu model with general toroidal boundary
conditions is calculated analytically and numerically. These calculations were
done by relating the partition function of the model with the generating
function of a site-colouring problem in a hexagonal lattice. Extending the
original Bethe-ansatz solution of the related colouring problem we are able to
calculate the eigenspectra of both models by solving the associated
Bethe-ansatz equations. We have also calculated, by exploring the conformal
invariance at the critical point, the mass ratios of the underlying massive
theory governing the Baxter-Wu model in the vicinity of its critical point.Comment: 32 pages latex, to appear in J. Phys. A: Math. Ge
Perfection of materials technology for producing improved Gunn-effect devices Interim scientific report
Chemical vapor deposition of epitaxial gallium arsenid
A Potts/Ising Correspondence on Thin Graphs
We note that it is possible to construct a bond vertex model that displays
q-state Potts criticality on an ensemble of phi3 random graphs of arbitrary
topology, which we denote as ``thin'' random graphs in contrast to the fat
graphs of the planar diagram expansion.
Since the four vertex model in question also serves to describe the critical
behaviour of the Ising model in field, the formulation reveals an isomorphism
between the Potts and Ising models on thin random graphs. On planar graphs a
similar correspondence is present only for q=1, the value associated with
percolation.Comment: 6 pages, 5 figure
The Yang-Baxter equation for PT invariant nineteen vertex models
We study the solutions of the Yang-Baxter equation associated to nineteen
vertex models invariant by the parity-time symmetry from the perspective of
algebraic geometry. We determine the form of the algebraic curves constraining
the respective Boltzmann weights and found that they possess a universal
structure. This allows us to classify the integrable manifolds in four
different families reproducing three known models besides uncovering a novel
nineteen vertex model in a unified way. The introduction of the spectral
parameter on the weights is made via the parameterization of the fundamental
algebraic curve which is a conic. The diagonalization of the transfer matrix of
the new vertex model and its thermodynamic limit properties are discussed. We
point out a connection between the form of the main curve and the nature of the
excitations of the corresponding spin-1 chains.Comment: 43 pages, 6 figures and 5 table
Absence of Phase Transition for Antiferromagnetic Potts Models via the Dobrushin Uniqueness Theorem
We prove that the -state Potts antiferromagnet on a lattice of maximum
coordination number exhibits exponential decay of correlations uniformly at
all temperatures (including zero temperature) whenever . We also prove
slightly better bounds for several two-dimensional lattices: square lattice
(exponential decay for ), triangular lattice (), hexagonal
lattice (), and Kagom\'e lattice (). The proofs are based on
the Dobrushin uniqueness theorem.Comment: 32 pages including 3 figures. Self-unpacking file containing the tex
file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and
eqsection.sty) and the 3 ps file
Exactly solvable interacting vertex models
We introduce and solvev a special family of integrable interacting vertex
models that generalizes the well known six-vertex model. In addition to the
usual nearest-neighbor interactions among the vertices, there exist extra
hard-core interactions among pair of vertices at larger distances.The
associated row-to-row transfer matrices are diagonalized by using the recently
introduced matrix product {\it ansatz}. Similarly as the relation of the
six-vertex model with the XXZ quantum chain, the row-to-row transfer matrices
of these new models are also the generating functions of an infinite set of
commuting conserved charges. Among these charges we identify the integrable
generalization of the XXZ chain that contains hard-core exclusion interactions
among the spins. These quantum chains already appeared in the literature. The
present paper explains their integrability.Comment: 20 pages, 3 figure
- …