419 research outputs found

    Simulating intergalactic quasar scintillation

    Get PDF
    Intergalactic scintillation of distant quasars is sensitive to free electrons and therefore complements Lyα\alpha absorption line experiments probing the neutral intergalactic medium (IGM). We present a new scheme to compute IGM refractive scintillation effects on distant sources in combination with Adaptive Mesh Refinement cosmological simulations. First we validate our model by reproducing the well-known interstellar scintillation (ISS) of Galactic sources. The simulated cosmic density field is then used to infer the statistical properties of intergalactic scintillation. Contrary to previous claims, we find that the scattering measure of the simulated IGM at z<2z<2 is \langle \mbox{SM}_{\equ}\rangle=3.879, i.e. almost 40 times larger than for the usually assumed smooth IGM. This yield an average modulation index ranging from 0.01 (νs=5\nu_s=5 GHz) up to 0.2 (νs=50\nu_s=50 GHz); above \nu_{s}\gsim30 GHz the IGM contribution dominates over ISS modulation. We compare our model with data from a 0.3≤z≤20.3\leq z\leq 2 quasar sample observed at \nu_{\obs}=8.4 GHz. For this high frequency (10.92≤νs≤25.210.92\leq \nu_s \leq 25.2), high galactic latitude sample ISS is negligible, and IGM scintillation can reproduce the observed modulation with a 4% accuracy, without invoking intrinsic source variability. We conclude by discussing the possibility of using IGM scintillation as a tool to pinpoint the presence of intervening high-zz groups/clusters along the line of sight, thus making it a probe suitably complementing Sunyaev-Zeldovich data recently obtained by \textit{Planck}.Comment: 14 pages, 13 figures, accepted for publication in MNRA

    Two phase galaxy formation: The Evolutionary Properties of Galaxies

    Get PDF
    We use our model for the formation and evolution of galaxies within a two-phase galaxy formation scenario, showing that the high-redshift domain typically supports the growth of spheroidal systems, whereas at low redshifts the predominant baryonic growth mechanism is quiescent and may therefore support the growth of a disc structure. Under this framework we investigate the evolving galaxy population by comparing key observations at both low and high-redshifts, finding generally good agreement. By analysing the evolutionary properties of this model, we are able to recreate several features of the evolving galaxy population with redshift, naturally reproducing number counts of massive star-forming galaxies at high redshifts, along with the galaxy scaling relations, star formation rate density and evolution of the stellar mass function. Building upon these encouraging agreements, we make model predictions that can be tested by future observations. In particular, we present the expected evolution to z=2 of the super-massive black hole mass function, and we show that the gas fraction in galaxies should decrease with increasing redshift in a mass, with more and more evolution going to higher and higher masses. Also, the characteristic transition mass from disc to bulge dominated system should decrease with increasing redshift.Comment: 15 pages, 11 figures. Version polished for publication in MNRA

    Particle energy cascade in the intergalactic medium

    Get PDF
    We study the development of high-energy (Ein &lt;= 1 TeV) cascades produced by a primary electron of energy Ein injected into the intergalactic medium (IGM). To this aim we have developed the new code MEDEA (Monte Carlo Energy Deposition Analysis) which includes Bremsstrahlung and inverse Compton (IC) processes, along with H/He collisional ionizations and excitations, and electron-electron collisions. The cascade energy partition into heating, excitations and ionizations depends primarily not only on the IGM ionized fraction, xe, but also on redshift, z, due to IC on cosmic microwave background (CMB) photons. While Bremsstrahlung is unimportant under most conditions, IC becomes largely dominant at energies Ein &gt;= 1 MeV. The main effect of IC at injection energies Ein &lt;= 100 MeV is a significant boost of the fraction of energy converted into low-energy photons (h\u3bd &lt; 10.2 eV) which do not further interact with the IGM. For energies Ein &gt;= 1 GeV CMB photons are preferentially upscattered within the X-ray spectrum (h\u3bd &gt; 104 eV) and can free stream to the observer. Complete tables of the fractional energy depositions as a function of redshift, Ein and ionized fraction are given. Our results can be used in many astrophysical contexts, with an obvious application related to the study of decaying/annihilating dark matter (DM) candidates in the high-z Universe

    Discovery of the supernova remnant G351.0-5.4

    Full text link
    Context. While searching the NRAO VLA Sky Survey (NVSS) for diffuse radio emission, we have serendipitously discovered extended radio emission close to the Galactic plane. The radio morphology suggests the presence of a previously unknown Galactic supernova remnant. An unclassified {\gamma}-ray source detected by EGRET (3EG J1744-3934) is present in the same location and may stem from the interaction between high-speed particles escaping the remnant and the surrounding interstellar medium. Aims. Our aim is to confirm the presence of a previously unknown supernova remnant and to determine a possible association with the {\gamma}-ray emission 3EG J1744-3934. Methods. We have conducted optical and radio follow-ups of the target using the Dark Energy Camera (DECam) on the Blanco telescope at Cerro Tololo Inter-American Observatory (CTIO) and the Giant Meterwave Radio Telescope (GMRT). We then combined these data with archival radio and {\gamma}-ray observations. Results. While we detected the extended emission in four different radio bands (325, 1400, 2417, and 4850 MHz), no optical counterpart has been identified. Given its morphology and brightness, it is likely that the radio emission is caused by an old supernova remnant no longer visible in the optical band. Although an unclassified EGRET source is co-located with the supernova remnant, Fermi-LAT data do not show a significant {\gamma}-ray excess that is correlated with the radio emission. However, in the radial distribution of the {\gamma}-ray events, a spatially extended feature is related with SNR at a confidence level ∼1.5\sim 1.5 {\sigma}. Conclusions. We classify the newly discovered extended emission in the radio band as the old remnant of a previously unknown Galactic supernova: SNR G351.0-5.4.Comment: 6 pages, 6 figures, accepted A&

    Neutrino emission from dark matter annihilation/decay in light of cosmic e±e^{\pm} and pˉ\bar{p} data

    Full text link
    A self-consistent global fitting method based on the Markov Chain Monte Carlo technique to study the dark matter (DM) property associated with the cosmic ray electron/positron excesses was developed in our previous work. In this work we further improve the previous study to include the hadronic branching ratio of DM annihilation/decay. The PAMELA pˉ/p\bar{p}/p data are employed to constrain the hadronic branching ratio. We find that the 95% (2σ2\sigma) upper limits of the quark branching ratio allowed by the PAMELA pˉ/p\bar{p}/p data is ∼0.032\sim 0.032 for DM annihilation and ∼0.044\sim 0.044 for DM decay respectively. This result shows that the DM coupling to pure leptons is indeed favored by the current data. Based on the global fitting results, we further study the neutrino emission from DM in the Galactic center. Our predicted neutrino flux is some smaller than previous works since the constraint from γ\gamma-rays is involved. However, it is still capable to be detected by the forth-coming neutrino detector such as IceCube. The improved points of the present study compared with previous works include: 1) the DM parameters, both the particle physical ones and astrophysical ones, are derived in a global fitting way, 2) constraints from various species of data sets, including γ\gamma-rays and antiprotons are included, and 3) the expectation of neutrino emission is fully self-consistent.Comment: 13 pages, 2 figures, 1 table; Published in IJMPA 201

    New Constraints from PAMELA anti-proton data on Annihilating and Decaying Dark Matter

    Get PDF
    Recently the PAMELA experiment has released its updated anti-proton flux and anti-proton to proton flux ratio data up to energies of ~200GeV. With no clear excess of cosmic ray anti-protons at high energies, one can extend constraints on the production of anti-protons from dark matter. In this letter, we consider both the cases of dark matter annihilating and decaying into standard model particles that produce significant numbers of anti-protons. We provide two sets of constraints on the annihilation cross-sections/decay lifetimes. In the one set of constraints we ignore any source of anti-protons other than dark matter, which give the highest allowed cross-sections/inverse lifetimes. In the other set we include also anti-protons produced in collisions of cosmic rays with interstellar medium nuclei, getting tighter but more realistic constraints on the annihilation cross-sections/decay lifetimes.Comment: 7 pages, 3 figures, 3 table

    The HI Content of Local Late-Type Galaxies

    Get PDF
    We present a solid relationship between the neutral hydrogen (HI) disk mass and the stellar disk mass of late-type galaxies in the local universe. This relationship is derived by comparing the stellar disk mass function from the Sloan Digital Sky Survey and the HI mass function from the HI Parkes All Sky Survey (HIPASS). We find that the HI mass in late-type galaxies tightly correlates with the stellar mass over three orders of magnitude in stellar disk mass. We cross-check our result with that obtained from a sample of HIPASS objects for which the stellar mass has been obtained by inner kinematics. In addition, we derive the HI versus halo mass relationship and the dependence of all the baryonic components in spirals on the host halo mass. These relationships bear the imprint of the processes ruling galaxy formation, and highlight the inefficiency of galaxies both in forming stars and in retaining their pristine HI gas.Comment: 6 pages, 5 figures. Match to the published version. References update
    • …
    corecore