5,134 research outputs found

    Moving Observers in an Isotropic Universe

    Get PDF
    We show how the anisotropy resulting from the motion of an observer in an isotropic universe may be determined by measurements. This provides a means to identify inertial frames, yielding a simple resolution to the twins paradox of relativity theory. We propose that isotropy is a requirement for a frame to be inertial; this makes it possible to relate motion to the large scale structure of the universe.Comment: 8 pages, 1 figure, with minor typographical correctio

    The Maxwell Lagrangian in purely affine gravity

    Full text link
    The purely affine Lagrangian for linear electrodynamics, that has the form of the Maxwell Lagrangian in which the metric tensor is replaced by the symmetrized Ricci tensor and the electromagnetic field tensor by the tensor of homothetic curvature, is dynamically equivalent to the Einstein-Maxwell equations in the metric-affine and metric formulation. We show that this equivalence is related to the invariance of the Maxwell Lagrangian under conformal transformations of the metric tensor. We also apply to a purely affine Lagrangian the Legendre transformation with respect to the tensor of homothetic curvature to show that the corresponding Legendre term and the new Hamiltonian density are related to the Maxwell-Palatini Lagrangian for the electromagnetic field. Therefore the purely affine picture, in addition to generating the gravitational Lagrangian that is linear in the curvature, justifies why the electromagnetic Lagrangian is quadratic in the electromagnetic field.Comment: 9 pages; published versio

    Two-dimensional gravity with a dynamical aether

    Get PDF
    We investigate the two-dimensional behavior of gravity coupled to a dynamical unit timelike vector field, i.e. "Einstein-aether theory". The classical solutions of this theory in two dimensions depend on one coupling constant. When this coupling is positive the only solutions are (i) flat spacetime with constant aether, (ii) de Sitter or anti-de Sitter spacetimes with a uniformly accelerated unit vector invariant under a two-dimensional subgroup of SO(2,1) generated by a boost and a null rotation, and (iii) a non-constant curvature spacetime that has no Killing symmetries and contains singularities. In this case the sign of the curvature is determined by whether the coupling is less or greater than one. When instead the coupling is negative only solutions (i) and (iii) are present. This classical study of the behavior of Einstein-aether theory in 1+1 dimensions may provide a starting point for further investigations into semiclassical and fully quantum toy models of quantum gravity with a dynamical preferred frame.Comment: 11 pages, 4 figure

    On the Trace-Free Einstein Equations as a Viable Alternative to General Relativity

    Full text link
    The quantum field theoretic prediction for the vacuum energy density leads to a value for the effective cosmological constant that is incorrect by between 60 to 120 orders of magnitude. We review an old proposal of replacing Einstein's Field Equations by their trace-free part (the Trace-Free Einstein Equations), together with an independent assumption of energy--momentum conservation by matter fields. While this does not solve the fundamental issue of why the cosmological constant has the value that is observed cosmologically, it is indeed a viable theory that resolves the problem of the discrepancy between the vacuum energy density and the observed value of the cosmological constant. However, one has to check that, as well as preserving the standard cosmological equations, this does not destroy other predictions, such as the junction conditions that underlie the use of standard stellar models. We confirm that no problems arise here: hence, the Trace-Free Einstein Equations are indeed viable for cosmological and astrophysical applications.Comment: Substantial changes from v1 including added author, change of title and emphasis of the paper although all original results of v1. remai

    Vortices in fermion droplets with repulsive dipole-dipole interactions

    Full text link
    Vortices are found in a fermion system with repulsive dipole-dipole interactions, trapped by a rotating quasi-two-dimensional harmonic oscillator potential. Such systems have much in common with electrons in quantum dots, where rotation is induced via an external magnetic field. In contrast to the Coulomb interactions between electrons, the (externally tunable) anisotropy of the dipole-dipole interaction breaks the rotational symmetry of the Hamiltonian. This may cause the otherwise rotationally symmetric exact wavefunction to reveal its internal structure more directly.Comment: 5 pages, 5 figure

    Alternative derivation of the relativistic contribution to perihelic precession

    Full text link
    An alternative derivation of the first-order relativistic contribution to perihelic precession is presented. Orbital motion in the Schwarzschild geometry is considered in the Keplerian limit, and the orbit equation is derived for approximately elliptical motion. The method of solution makes use of coordinate transformations and the correspondence principle, rather than the standard perturbative approach. The form of the resulting orbit equation is similar to that derived from Newtonian mechanics and includes first-order corrections to Kepler's orbits due to general relativity. The associated relativistic contribution to perihelic precession agrees with established first-order results. The reduced radius for the circular orbit is in agreement to first-order with that calculated from the Schwarzschild effective potential. The method of solution is understandable by undergraduate students.Comment: 12 pages, 2 figures. Accepted for publication in the American Journal of Physic

    Thermodynamical Properties and Quasi-localized Energy of the Stringy Dyonic Black Hole Solution

    Full text link
    In this article, we calculate the heat flux passing through the horizon .TSrh. {\bf TS}|_{r_h} and the difference of energy between the Einstein and M{\o}ller prescription within the region M{\cal M}, in which is the region between outer horizon H+{\cal H}_+ and inner horizon H{\cal H}_-, for the modified GHS solution, KLOPP solution and CLH solution. The formula . E_{\rm Einstein}|_{\cal M} = . E_{\rm M{\o}ller}|_{\cal M} - \sum_{\partial {\cal M}} {\bf TS}$ is obeyed for the mGHS solution and the KLOPP solution, but not for the CLH solution. Also, we suggest a RN-like stringy dyonic black hole solution, which comes from the KLOPP solution under a dual transformation, and its thermodynamical properties are the same as the KLOPP solution

    Action Principle for the Generalized Harmonic Formulation of General Relativity

    Full text link
    An action principle for the generalized harmonic formulation of general relativity is presented. The action is a functional of the spacetime metric and the gauge source vector. An action principle for the Z4 formulation of general relativity has been proposed recently by Bona, Bona--Casas and Palenzuela (BBP). The relationship between the generalized harmonic action and the BBP action is discussed in detail.Comment: This version is contains more thorough presentations and discussions of the key results. To be published in PRD. (8 pages, no figures

    Acceleration-Induced Nonlocality: Uniqueness of the Kernel

    Get PDF
    We consider the problem of uniqueness of the kernel in the nonlocal theory of accelerated observers. In a recent work, we showed that the convolution kernel is ruled out as it can lead to divergences for nonuniform accelerated motion. Here we determine the general form of bounded continuous kernels and use observational data regarding spin-rotation coupling to argue that the kinetic kernel given by K(τ,τ)=k(τ)K(\tau ,\tau')=k(\tau') is the only physically acceptable solution.Comment: LaTeX file, 2 figures, 14 page

    Universality in the Gravitational Stretching of Clocks, Waves and Quantum States

    Full text link
    There are discernible and fundamental differences between clocks, waves and physical states in classical physics. These fundamental concepts find a common expression in the context of quantum physics in gravitational fields; matter and light waves, quantum states and oscillator clocks become quantum synonymous through the Planck-Einstein-de Broglie relations and the equivalence principle. With this insight, gravitational effects on quantum systems can be simply and accurately analyzed. Apart from providing a transparent framework for conceptual and quantitative thinking on matter waves and quantum states in a gravitational field, we address and resolve with clarity the recent controversial discussions on the important issue of the relation and the crucial difference between gravimetery using atom interferometers and the measurement of gravitational time dilation.Comment: Gravity Research Foundation honorable mention, 201
    corecore