826 research outputs found

    Extensive chaos in Rayleigh-Bénard convection

    Get PDF
    Using large-scale numerical calculations we explore spatiotemporal chaos in Rayleigh-Bénard convection for experimentally relevant conditions. We calculate the spectrum of Lyapunov exponents and the Lyapunov dimension describing the chaotic dynamics of the convective fluid layer at constant thermal driving over a range of finite system sizes. Our results reveal that the dynamics of fluid convection is truly chaotic for experimental conditions as illustrated by a positive leading-order Lyapunov exponent. We also find the chaos to be extensive over the range of finite-sized systems investigated as indicated by a linear scaling between the Lyapunov dimension of the chaotic attractor and the system size

    Topological orders and Edge excitations in FQH states

    Full text link
    Fractional quantum Hall (FQH) liquids contain extremely rich internal structures which represent a whole new kind of ordering. We discuss characterization and classification of the new orders (which is called topological orders). We also discuss the edge excitations in FQH liquids, which form the so-called chiral Luttinger liquids. The chiral Luttinger liquids at the edges also have very rich structures as a reflection of the rich topological orders in the bulk. Thus, edge excitations provide us a practical way to measure topological orders in experiments.Comment: 67 pages, plain-tex, 3 figures. The section about spin vector was rewritten to make it more readabl

    Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene

    Full text link
    We have measured a strictly linear pi-plasmon dispersion along the axis of individualized single wall carbon nanotubes, which is completely different from plasmon dispersions of graphite or bundled single wall carbon nanotubes. Comparative ab initio studies on graphene based systems allow us to reproduce the different dispersions. This suggests that individualized nanotubes provide viable experimental access to collective electronic excitations of graphene, and it validates the use of graphene to understand electronic excitations of carbon nanotubes. In particular, the calculations reveal that local field effects (LFE) cause a mixing of electronic transitions, including the 'Dirac cone', resulting in the observed linear dispersion

    Direct Calculation of the Spin Stiffness in the J1J_1--J2J_2 Heisenberg Antiferromagnet

    Full text link
    We calculate the spin stiffness ρs\rho_s for the frustrated spin-12\frac{1}{2} Heisenberg antiferromagnet on a square lattice by exact diagonalizations on finite clusters of up to 3636 sites followed by extrapolations to the thermodynamic limit. For the non-frustrated case, we find that ρs=(0.183±0.003)J1\rho_s = (0.183\pm 0.003)J_1, in excellent agreement with the best results obtained by other means. Turning on frustration, the extrapolated stiffness vanishes for 0.4J2/J10.60.4 \lesssim J_2/J_1 \lesssim 0.6. In this intermediate region, the finite-size scaling works poorly -- an additional sign that their is neither N\'eel nor collinear magnetic order. Using a hydrodynamic relation, and previous results for the transverse susceptibility, we also estimate the spin-wave velocity in the N\'eel-ordered region.Comment: 4 pages, uuencoded compressed ps-file (made with uufiles

    Novel spin-liquid states in the frustrated Heisenberg antiferromagnet on the honeycomb lattice

    Full text link
    Recent experiment on a honeycomb-lattice Heisenberg antiferromagnet (AF) Bi3_3Mn4_4O12_{12}(NO3_3) revealed a novel spin-liquid-like behavior down to low temperature, which was ascribed to the frustration effect due to the competition between the AF nearest- and next-nearest-neighbor interactions J1J_1 and J2J_2. Motivated by the experiment, we study the ordering of the J1J_1 -J2J_2 frustrated classical Heisenberg AF on a honeycomb lattice both by a low-temperature expansion and a Monte Carlo simulation. The model has been known to possess a massive degeneracy of the ground state, which, however, might be lifted due to thermal fluctuations leading to a unique ordered state, the effect known as 'order-by-disorder'. We find that the model exhibits an intriguing ordering behavior, particularly near the AF phase boundary. The energy scale of the order-by-disorder is suppressed there down to extremely low temperatures, giving rise to exotic spin-liquid states like a "ring-liquid" or a "pancake-liquid" state accompanied by the characteristic spin structure factor and the field-induced antiferromagnetism. We argue that the recent experimental data are explicable if the system is in such exotic spin-liquid states

    Midge-stabilized sediment drives the composition of benthic cladoceran communities in Lake Mývatn, Iceland

    Get PDF
    The importance of environmental disturbances as drivers of ecological communities depends not only on the magnitude of the disturbance, but also on the disturbance-specific sensitivity of the community. Organisms that alter the physical structure of their surroundings can affect the sensitivity of their habitat to environmental disturbance, and may alter the potential for disturbance to shape ecological communities. Such organisms therefore act as ecosystem engineers by indirectly modifying the resources available to other species. The benthos of shallow, eutrophic Lake Mývatn, Iceland, is frequently disturbed by wind events that lead to sediment resuspension. The impact of wind, however, depends on the abundance of midges (Chironomidae) whose larval tubes bind sediment and reduce wind-driven resuspension. Here, we investigate the long-term effect of fluctuations in midge abundance on the benthic cladoceran community using two lake sediment cores representing 30 and 140 years of deposition. In both cores, midge remains show a significant positive correlation with abundance of a large benthic surface-dwelling cladoceran, Eurycercus lamellatus, relative to the abundance of a small within-sediment-dwelling cladoceran, Alona rectangula. To experimentally investigate whether this shift could have been caused by midges acting as ecosystem engineers, we subjected cladoceran communities to sediment resuspension events within mesocosms. We found a significant decrease in abundance of the large epibenthic E. lamellatus relative to the abundance of small infaunal Alona spp. when subjected to disturbance. These findings show that physical alteration of benthic sediment and hence the sensitivity of the sediment to disturbance may explain the community shift in cladocerans observed with fluctuating midge abundance in Lake Mývatn.National Science Foundation Graduate Research Fellowship. Grant Number: DGE-1256259 LTREB. Grant Number: DEB-1052160Peer Reviewe

    Elevated visual dependency in young adults after chemotherapy in childhood

    Get PDF
    Chemotherapy in childhood can result in long-term neurophysiological side-effects, which could extend to visual processing, specifically the degree to which a person relies on vision to determine vertical and horizontal (visual dependency). We investigated whether adults treated with chemotherapy in childhood experience elevated visual dependency compared to controls and whether any difference is associated with the age at which subjects were treated. Visual dependency was measured in 23 subjects (mean age 25.3 years) treated in childhood with chemotherapy (CTS) for malignant, solid, non-CNS tumors. We also stratified CTS into two groups: those treated before 12 years of age and those treated from 12 years of age and older. Results were compared to 25 healthy, age-matched controls. The subjective visual horizontal (SVH) and vertical (SVV) orientations was recorded by having subjects position an illuminated rod to their perceived horizontal and vertical with and without a surrounding frame tilted clockwise and counter-clockwise 20° from vertical. There was no significant difference in rod accuracy between any CTS groups and controls without a frame. However, when assessing visual dependency using a frame, CTS in general (p = 0.006) and especially CTS treated before 12 years of age (p = 0.001) tilted the rod significantly further in the direction of the frame compared to controls. Our findings suggest that chemotherapy treatment before 12 years of age is associated with elevated visual dependency compared to controls, implying a visual bias during spatial activities. Clinicians should be aware of symptoms such as visual vertigo in adults treated with chemotherapy in childhood
    corecore