18,850 research outputs found

    Cavitation Event Rates and Nuclei Distributions

    Get PDF
    This paper examines the relationship between the cavitation event rates on axisymmetric headforms and the nuclei distributions in the incident flow. An analytical model is developed to relate these quantities and the results are compared with experimental cavitation event rates measured in the Large Cavitation Channel (LCC) at David Taylor Research Center (DTRC) on three different sizes of Schiebe body. The experiments were carried out at various cavitation numbers, tunnel velocities and air contents. Boundary layer, bubble screening and observable cavitation bubble size effects on the event rates are examined. The trends in the event rates with changing cavitation number and body size are consistent with those observed experimentally. However the magnitudes of the event rates are about an order of magnitude larger than the experimental data. Nevertheless it is shown that the cavitation inception values predicted using a certain critical event rate are consistent with those observed experimentally

    Observations and scaling of travelling bubble cavitation

    Get PDF
    Recent observations of growing and collapsing bubbles in flows over axisymmetric headforms have revealed the complexity of the ‘micro-fluid-mechanics’ associated with these bubbles (van der Meulen & van Renesse 1989; Briancon-Marjollet et al. 1990; Ceccio & Brennen 1991). Among the complex features observed were the bubble-to-bubble and bubble-to-boundary-layer interactions which leads to the shearing of the underside of the bubble and alters the collapsing process. All of these previous tests, though, were performed on small headform sizes. The focus of this research is to analyse the scaling effects of these phenomena due to variations in model size, Reynolds number and cavitation number. For this purpose, cavitating flows over Schiebe headforms of different sizes (5.08, 25.4 and 50.8 cm in diameter) were studied in the David Taylor Large Cavitation Channel (LCC). The bubble dynamics captured using high-speed film and electrode sensors are presented along with the noise signals generated during the collapse of the cavities. In the light of the complexity of the dynamics of the travelling bubbles and the important bubble/bubble interactions, it is clear that the spherical Rayleigh-Plesset analysis cannot reproduce many of the phenomena observed. For this purpose an unsteady numerical code was developed which uses travelling sources to model the interactions between the bubble (or bubbles) and the pressure gradients in the irrotational flow outside the boundary layer on the headform. The paper compares the results of this numerical code with the present experimental results and demonstrates good qualitative agreement between the two

    Acrylamide Production Using Encapsulated Nitrile Hydratase from \u3cem\u3ePseudonocardia thermophila\u3c/em\u3e in a Sol–gel Matrix

    Get PDF
    The cobalt-type nitrile hydratase from Pseudonocardia thermophila JCM 3095 (PtNHase) was successfully encapsulated in tetramethyl orthosilicate sol–gel matrices to produce a PtNHase:sol–gel biomaterial. The PtNHase:sol–gel biomaterial catalyzed the conversion of 600 mM acrylonitrile to acrylamide in 60 min at 35 °C with a yields of \u3e90%. Treatment of the biomaterial with proteases confirmed that the catalytic activity is due to the encapsulated enzyme and not surface bound NHase. The biomaterial retained 50% of its activity after being used for a total of 13 consecutive reactions for the conversion of acrylonitrile to acrylamide. The thermostability and long-term storage of the PtNHase:sol–gel are substantially improved compared to the soluble NHase. Additionally, the biomaterial is significantly more stable at high concentrations of methanol (50% and 70%, v/v) as a co-solvent for the hydration of acrylonitrile than native PtNHase. These data indicate that PtNHase:sol–gel biomaterials can be used to develop new synthetic avenues involving nitriles as starting materials given that the conversion of the nitrile moiety to the corresponding amide occurs under mild temperature and pH conditions

    ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    Get PDF
    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested

    Pollution reduction technology program small jet aircraft engines, phase 3

    Get PDF
    A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals

    Pollution Reduction Technology Program for Small Jet Aircraft Engines, Phase 2

    Get PDF
    A series of iterative combustor pressure rig tests were conducted on two combustor concepts applied to the AiResearch TFE731-2 turbofan engine combustion system for the purpose of optimizing combustor performance and operating characteristics consistant with low emissions. The two concepts were an axial air-assisted airblast fuel injection configuration with variable-geometry air swirlers and a staged premix/prevaporization configuration. The iterative rig testing and modification sequence on both concepts was intended to provide operational compatibility with the engine and determine one concept for further evaluation in a TFE731-2 engine

    Forces and pressures induced on circular plates by a single lifting jet in ground effect

    Get PDF
    NASA Ames is conducting a program to develop improved methods for predicting suckdown and hot-gas ingestion on jet V/STOL aircraft when they are in ground effect. As part of that program a data base is being created that provides a systematic variation of parameters so that current empirical prediction procedures can be modified. The first series of tests in this program is complete. This report is one of three that presents the data obtained from tests conducted at Lockheed Aeronautical Systems - Rye Canyon Facility and the High Bay area of the 40 by 80 foot Wind Tunnel at Ames Research Center. Suckdown on two circular plates is examined
    • …
    corecore