387 research outputs found

    Characterization of typical platelet injector flow configurations

    Get PDF
    A study to investigate the hydraulic atomization characteristics of several novel injector designs for use in liquid propellant rocket engines is presented. The injectors were manufactured from a series of thin stainless steel platelets through which orifices were very accurately formed by a photoetching process. These individual platelets were stacked together and the orifices aligned so as to produce flow passages of prescribed geometry. After alignment, the platelets were bonded into a single, 'platelet injector', unit by a diffusion bonding process. Because of the complex nature of the flow associated with platelet injectors, it was necessary to use experimental techniques, exclusively, throughout the study. Large scale models of the injectors were constructed from aluminum plates and the appropriate fluids were modeled using a glycerol-water solution. Stop-action photographs of test configurations, using spark-shadowgraph or stroboscopic back-lighting, are shown

    SALT Long-slit Spectroscopy of Luminous Obscured Quasars: An Upper Limit on the Size of the Narrow-Line Region?

    Get PDF
    We present spatially resolved long-slit spectroscopy from the Southern African Large Telescope (SALT) to examine the spatial extent of the narrow-line regions (NLRs) of a sample of 8 luminous obscured quasars at 0.10 < z < 0.43. Our results are consistent with an observed shallow slope in the relationship between NLR size and L_[OIII], which has been interpreted to indicate that NLR size is limited by the density and ionization state of the NLR gas rather than the availability of ionizing photons. We also explore how the NLR size scales with a more direct measure of instantaneous AGN power using mid-IR photometry from WISE, which probes warm to hot dust near the central black hole and so, unlike [OIII], does not depend on the properties of the NLR. Using our results as well as samples from the literature, we obtain a power-law relationship between NLR size and L_8micron that is significantly steeper than that observed for NLR size and L_[OIII]. We find that the size of the NLR goes approximately as L^(1/2)_8micron, as expected from the simple scenario of constant-density clouds illuminated by a central ionizing source. We further see tentative evidence for a flattening of the relationship between NLR size and L_8micron at the high luminosity end, and propose that we are seeing a limiting NLR size of 10 - 20 kpc, beyond which the availability of gas to ionize becomes too low. We find that L_[OIII] ~ L_8micron^(1.4), consistent with a picture in which the L_[OIII] is dependent on the volume of the NLR. These results indicate that high-luminosity quasars have a strong effect in ionizing the available gas in a galaxy.Comment: 9 Pages, 5 figures, accepted to Ap

    Composite Spectral Energy Distributions and Infrared-Optical Colors of Type 1 and Type 2 Quasars

    Full text link
    We present observed mid-infrared and optical colors and composite spectral energy distributions (SEDs) of type 1 (broad-line) and 2 (narrow-line) quasars selected from Sloan Digital Sky Survey (SDSS) spectroscopy. A significant fraction of powerful quasars are obscured by dust, and are difficult to detect in optical photometric or spectroscopic surveys. However these may be more easily identified on the basis of mid-infrared (MIR) colors and SEDs. Using samples of SDSS type 1 type 2 matched in redshift and [OIII] luminosity, we produce composite rest-frame 0.2-15 micron SEDs based on SDSS, UKIDSS, and Wide-Field Infrared Survey Explorer (WISE) photometry and perform model fits using simple galaxy and quasar SED templates. The SEDs of type 1 and 2 quasars are remarkably similar, with the differences explained primarily by the extinction of the quasar component in the type 2 systems. For both types of quasar, the flux of the AGN relative to the host galaxy increases with AGN luminosity (L_[OIII]) and redder observed MIR color, but we find only weak dependencies of the composite SEDs on mechanical jet power as determined through radio luminosity. We conclude that luminous quasars can be effectively selected using simple MIR color criteria similar to those identified previously (W1-W2 > 0.7 [Vega]), although these criteria miss many heavily obscured objects. Obscured quasars can be further identified based on optical-IR colors (for example, (u-W3 [AB]) > 1.4(W1-W2 [Vega])+3.2). These results illustrate the power of large statistical studies of obscured quasars selected on the basis of mid-IR and optical photometry.Comment: Accepted for publication in ApJ; 14 pages, 9 figures, 2 tables; composite Type 1 and Type 2 quasar SEDs available at http://www.dartmouth.edu/~hickox/Hickox2017_QSO_SED_Table1.tx

    Variable Hard X-ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2-10

    Full text link
    We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2-10. Recent observations suggest that this galaxy hosts an actively accreting black hole with mass ~10^6 M_sun. The presence of an AGN in a low-mass starburst galaxy marks a new environment for active galactic nuclei (AGNs), with implications for the processes by which "seed" black holes may form in the early Universe. In this paper, we analyze four epochs of X-ray observations of Henize 2-10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on detailed analysis of the source and background, we find that the hard (2-10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs.Comment: 7 pages, 4 figures, 2 tables; accepted for publication in Ap

    Variable Hard-X-Ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2–10

    Get PDF
    We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2–10. Recent observations suggest that this galaxy hosts an actively accreting black hole (BH) with mass ~106 . The presence of an active galactic nucleus (AGN) in a low-mass starburst galaxy marks a new environment for AGNs, with implications for the processes by which seed BHs may form in the early universe. In this paper, we analyze four epochs of X-ray observations of Henize 2–10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on a detailed analysis of the source and background, we find that the hard (2–10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs

    The Clustering of Ha Emitters at z=2.23 from HiZELS

    Get PDF
    We present a clustering analysis of 370 high-confidence Hα emitters (HAEs) at z = 2.23. The HAEs are detected in the Hi-Z Emission Line Survey (HiZELS), a large-area blank field 2.121 μm narrow-band survey using the United Kingdom Infrared Telescope Wide Field Camera (WFCAM). Averaging the two-point correlation function of HAEs in two ∼1° scale fields [United Kingdom Infrared Deep Sky Survey/Ultra Deep Survey (UDS) and Cosmological Evolution Survey (COSMOS) fields] we find a clustering amplitude equivalent to a correlation length of r0 = 3.7 ± 0.3 h−1 Mpc for galaxies with star formation rates of ≳7 M⊙ yr−1. The data are also well-fitted by the expected correlation function of cold dark matter (CDM), scaled by a bias factor: ωHAE = b2ωDM where . The corresponding ‘characteristic’ mass for the haloes hosting HAEs is log (Mh/[h−1 M⊙]) = 11.7 ± 0.1. Comparing to the latest semi-analytic galform predictions for the evolution of HAEs in a ΛCDM cosmology, we find broad agreement with the observations, with galform predicting an HAE correlation length of ∼4 h−1 Mpc. Motivated by this agreement, we exploit the simulations to construct a parametric model of the halo occupation distribution (HOD) of HAEs, and use this to fit the observed clustering. Our best-fitting HOD can adequately reproduce the observed angular clustering of HAEs, yielding an effective halo mass and bias in agreement with that derived from the scaled ωDM fit, but with the relatively small sample size the current data provide a poor constraint on the HOD. However, we argue that this approach provides interesting hints into the nature of the relationship between star-forming galaxies and the matter field, including insights into the efficiency of star formation in massive haloes. Our results support the broad picture that ‘typical’ (≲L⋆) star-forming galaxies have been hosted by dark matter haloes with Mh ≲ 1012 h−1 M⊙ since z ≈ 2, but with a broad occupation distribution and clustering that is likely to be a strong function of luminosity

    Gemini Long-slit Observations of Luminous Obscured Quasars: Further Evidence for an Upper Limit on the Size of the Narrow-Line Region

    Full text link
    We examine the spatial extent of the narrow-line regions (NLRs) of a sample of 30 luminous obscured quasars at 0.4<z<0.70.4 < z < 0.7 observed with spatially resolved Gemini-N GMOS long-slit spectroscopy. Using the [OIII]λ5007\lambda5007 emission feature, we estimate the size of the NLR using a cosmology-independent measurement: the radius where the surface brightness falls to 1015^{-15} erg s1^{-1} cm2^{-2} arcsec2^{-2}. We then explore the effects of atmospheric seeing on NLR size measurements and conclude that direct measurements of the NLR size from observed profiles are too large by 0.1 - 0.2 dex on average, as compared to measurements made to best-fit S\'{e}rsic or Voigt profiles convolved with the seeing. These data, which span a full order of magnitude in IR luminosity (log(L8μm/ergs1)=44.445.4\log{(L_{8 \mu \mathrm{m}} / \mathrm{erg\, s}^{-1})} = 44.4 - 45.4) also provide strong evidence that there is a flattening of the relationship between NLR size and AGN luminosity at a seeing-corrected size of 7\sim 7 kpc. The objects in this sample have high luminosities which place them in a previously under-explored portion of the size-luminosity relationship. These results support the existence of a maximal size of the narrow-line region around luminous quasars; beyond this size either there is not enough gas, or the gas is over-ionized and does not produce enough [OIII]λ5007\lambda5007 emission.Comment: 10 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Gemini Long-Slit Observations of Luminous Obscured Quasars: Further Evidence for an Upper Limit on the Size of the Narrow-Line Region

    Get PDF
    We examine the spatial extent of the narrow-line regions (NLRs) of a sample of 30 luminous obscured quasars at 0.4 \u3c z \u3c 0.7 observed with spatially resolved Gemini-N GMOS long-slit spectroscopy. Using the [O III] λ5007 emission feature, we estimate the size of the NLR using a cosmology-independent measurement: the radius where the surface brightness falls to 10–15 erg s–1 cm–2 arcsec–2. We then explore the effects of atmospheric seeing on NLR size measurements and conclude that direct measurements of the NLR size from observed profiles are too large by 0.1-0.2 dex on average, as compared to measurements made to best-fit Sérsic or Voigt profiles convolved with the seeing. These data, which span a full order of magnitude in IR luminosity (log (L 8 μm/erg s–1) = 44.4-45.4), also provide strong evidence that there is a flattening of the relationship between NLR size and active galactic nucleus luminosity at a seeing-corrected size of ~7 kpc. The objects in this sample have high luminosities which place them in a previously under-explored portion of the size-luminosity relationship. These results support the existence of a maximal size of the NLR around luminous quasars; beyond this size, there is either not enough gas or the gas is over-ionized and does not produce enough [O III] λ5007 emission

    A Redline Starburst: Co(2-1) Observations of an Eddington-Limited Galaxy Reveal Star Formation at its Most Extreme

    Get PDF
    We report observations of the CO(2-1) emission of SDSSJ1506+54, a compact (r_e~135pc) starburst galaxy at z=0.6. SDSSJ1506+54 appears to be forming stars close to the limit allowed by stellar radiation pressure feedback models: the measured L_IR/L\u27_CO 1500 is one of the highest measured for any galaxy. With its compact optical morphology but extended low surface brightness envelope, post-starburst spectral features, high infrared luminosity (L_IR\u3e10^12.5 L_Sun), low gas fraction (M_H2/M_stars~15%), and short gas depletion time (tens of Myr), we speculate that this is a feedback- limited central starburst episode at the conclusion of a major merger. Taken as such, SDSSJ1504+54 epitomizes the brief closing stage of a classic model of galaxy growth: we are witnessing a key component of spheroid formation during what we term a \u27redline\u27 starburst
    corecore