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ABSTRACT

We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy
Henize 2–10. Recent observations suggest that this galaxy hosts an actively accreting black hole (BH) with
mass∼106 ☉M . The presence of an active galactic nucleus (AGN) in a low-mass starburst galaxy marks a new
environment for AGNs, with implications for the processes by which “seed” BHs may form in the early universe.
In this paper, we analyze four epochs of X-ray observations of Henize 2–10, to characterize the long-term behavior
of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and
2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on a detailed analysis of the
source and background, we find that the hard (2–10 keV) flux of the putative AGN has decreased by approximately
an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and
2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable
flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray
and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs.

Key words: galaxies: active – galaxies: dwarf – galaxies: evolution – galaxies: individual (Henize 2–10) –
X-rays: galaxies

1. INTRODUCTION

The nearby (∼9Mpc) dwarf starburst galaxy Henize 2–10,
exhibits intense star formation (e.g., Allen et al. 1976), while in
the center of the galaxy, an X-ray point source (Kobulnicky &
Martin 2010) and relatively luminous radio point source
(Kobulnicky & Johnson 1999; Johnson & Kobulnicky 2003)
were found to be co-spatial, suggesting the existence of an
accreting low-mass active galactic nucleus (AGN) with a black
hole (BH) of mass ∼ ☉M106 (Reines et al. 2011; Reines &
Deller 2012). This represented the first possible detection of an
AGN in a dwarf starburst galaxy. Even if a large fraction of
dwarf galaxies host massive BHs, they are challenging to detect
as AGNs because the AGN emission is faint and its signatures
can be swamped by surrounding star formation (e.g., Reines
et al. 2013); X-ray observations can be one of the most
effective methods for identifying AGNs in dwarf galaxies (e.g.,
Reines et al. 2014; Lemons et al. 2015; Secrest et al. 2015). If
the existence of an AGN in He 2–10 is confirmed, it would
serve as one of the best possible analogs for BH and galaxy
growth in the early history of the universe (e.g., Reines
et al. 2011). Most bulge-dominated galaxies contain super-
massive BHs, however, the process by which the orignal
“seed” BHs formed remains poorly constrained (e.g., Johnson
& Bromm 2007; Volonteri 2010).

Currently, the available observational evidence for the
central compact sources in He 2–10 favors its interpretation
as a supermassive BH. The majority of its radio emission

originates from a region <3 × 1 pc in size (Reines &
Deller 2012) and is consistent with being spatially coincident
with the Chandra hard-X-ray point source at the dynamical
center of the galaxy (Reines et al. 2011). Assuming that the
radio and X-ray emission are produced by a BH, a comparison
with the BH fundamental plane (Merloni et al. 2003) suggests
that the mass is ∼106 ☉M (Reines et al. 2011). Alternatively,
the X-ray emission could in principle come from an
ultraluminous X-ray source that is powered by a stellar-mass
BH (Roberts 2007). However, this cannot account for the
observed compact radio flux (e.g., Middleton et al. 2013;
Wolter et al. 2014), although we note that previous radio and
X-ray observations are not strictly simultaneous. We can most
likely rule out supernova (SN) remnants as the cause of the X-
ray emission; there are no massive star-forming clusters
coincident with the compact radio emission, rendering this
scenario somewhat implausible, but not impossible. To more
robustly constrain the nature of the compact central source in
He 2–10 and to better constrain its mass, it is important to
understand how its X-ray luminosity varies with time. This is
the goal of the present paper.
The original evidence for the AGN in He 2–10 came in part

from analysis of the spectrally hard, resolved point source in
the 2001 Chandra observations. Here, we analyze data taken
from Chandra (2001), XMM-Newton (2004 and 2011), and
ASCA (1997) to obtain spectra at each epoch and a resulting
measure of the long-term variability of the hard nuclear source.
The temporal baseline of the observations is sufficient to probe
variability on timescales reasonable for an intermediate-mass
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BH or low-mass AGN, as shown by the small known sampling
of these rare objects (Dewangan et al. 2008).

2. DATA REDUCTION AND SPECTRAL ANALYSIS

In this section we describe the spectral extraction process for
each observation, with a focus on details of the sophisticated
background modeling, which was required for the XMM-
Newton and ASCA observations. All spectral analyses are
performed using XSPEC v12.8.0 (Arnaud 1996). See Table 1
for the details of the observations. We will focus primarily on
the more sensitive observations taken by Chandra in 2001 and
XMM in 2004 and 2011, but will also include a discussion of
the 1997 ASCA observation that provides a (less sensitive)
baseline measurement of the source flux. Throughout the paper,
uncertainties on X-ray measurements (fluxes, luminosities, and
spectral parameters) represent 90% confidence intervals.

2.1. Chandra

The nuclear X-ray point source in He 2–10 was discovered
in the 20 ks ACIS-S Chandra observation of He 2–10 on 2001
March 23 (Reines et al. 2011). The pipeline-reduced data from
this observation (see Figure 1) were obtained from the
HEASARC public archive and were reduced using the analysis
tools of CIAO 4.5. Time filtering yielded 19.7 ks of cleaned
exposure. For Chandra we defined two separate source
extraction regions: a small region of radius 2″. 25 at the nuclear

region of the galaxy was used to measure the flux of the hard
point source, and a larger region of radius 16″. 8 was used to
include the soft diffuse X-ray component. In either case, the
background region was comprised of an annulus of outer radius
58 arcsec, excluding the larger (diffuse) source region and
another point source about 45 arcsec away from the source. We
note that the background level above 2 keV in the Chandra
observation was much less prominent than in the XMM and
ASCA observations. The spectrum, as well as the response and
ancilliary files, were extracted using the specextract
command. Due to the high signal-to-noise ratio (S/N) and
low background, we used CIAO’s built-in background
subtraction rather than simultaneously fitting source and
background spectra, as for the XMM and ASCA observations.
For all of the observations presented in this paper, the source

spectrum is described with a model consisting of the power-law
component to model the hard nuclear source and optically thin
thermal (VMEKAL; Mewe et al. 1985; Liedahl et al. 1995)
component to model the diffuse emission, with abundance
values fixed to those obtained in Kobulnicky & Martin (2010)
(0.78 for light elements and 0.29 for heavy elements), and
allowing the normalization and temperature to float. We use a
VMEKAL to match the spectral analysis of Reines et al.
(2011), but note that fitting with an APEC model (Smith
et al. 2001) has no significant effect on the results for the hard
component. Following Kobulnicky & Martin (2010), we
include Galactic absorption = ×N 5 10H,Gal

20 cm−2 on all

Table 1
Observation Details

Net Counts
Instrument Detector Obs.ID Date Exposure in ks (clean) 0.5–2 keV (2–8 keV)

Chandra ACIS-S 2075 2001 Mar 23 20.0 (19.7) 983 (174)
XMM-Newton pn 0202650101 2004 May 27 42.0 (29.3) 3216 (234)
XMM-Newton pn 0672800101 2011 May 11 26.9 (17.6) 1863 (92)
ASCA SIS 65017000 1997 Nov 30 39.8 (22.4) 197 (52)

Note. The details of each of the observations used in this paper. Observed net counts after background subtraction are listed for the 0.5–2 and 2–8 keV bands (see
Section 2 for details of source extraction and background analysis). Exposure times listed are for the total exposure and the net exposure after cleaning for flares. We
focus our analysis on the more sensitive Chandra and XMM observations, but include the earlier ASCA observation as a check on the baseline flux level for the source.

Figure 1. Chandra images in the soft (0.5–2 keV) and hard (3–8 keV) X-rays; energy ranges are chosen to clearly separate the soft diffuse component from the hard
compact nuclear emission. The XMM source extraction region, as well as the two Chandra regions are superimposed. The excellent angular resolution of
Chandra allows for clear imaging of the X-ray morphology. Widespread diffuse emission from star formation is seen in soft X-rays, while the central nuclear source is
clearly seen at hard X-rays. XMM-Newton has significantly poorer angular resolution, thus a larger extraction region was required in order to include sufficient
source flux.
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components, and local absorption for the VMEKAL compo-
nent ( = ×N 9.7 10H,Diffuse

20 cm−2). The absorption on the
power-law component (NH,Nuclear) was allowed to float.
Absorption is computed using the tbabs model (Wilms
et al. 2000). In XSPEC notation, the source model is given by:

Source =
+

(
)

tbabs tbabs *VMEKAL

tbabs *powerlaw . (1)

Gal Diffuse

Nuclear

We first fit this model to the spectrum from the nuclear (2″. 25
radius) source region, to obtain the strongest possible
constraint on the emission from the unresolved hard compo-
nent. With relatively few counts at high energies we obtain
poor constraints on the hard-X-ray photon index, so this is
fixed to the canonical AGN value of Γ = 1.8. (Repeating the fit
for values of intrinsic Γ varying within a range typical for
AGN, < Γ <1.4 2.2 Tozzi et al. 2006, produces no significant
change in the unabsorbed flux.) The fit yields

= ×−
+N (4.61 ) 10H 1.26

1.67 22 cm−2, indicating substantial absorp-
tion. We next fit the same model to the spectrum from the
extended source region (a circle centered on the nuclear region
with 16″. 8 radius), but fix the NH value on the power-law
component to that obtained for the nuclear spectrum. We obtain
a consistent and nearly identical flux for the hard power-law
component between the extended and nuclear regions, but a
substantially brighter diffuse (VMEKAL) component in the
extended region, with best-fit = ±k 0.65 0.03T keV. This
confirms that for an even larger extraction region such as
those used for XMM and ASCA, the hard spectral component
can be associated with the compact nuclear source. The best-fit
fluxes and spectral parameters are given in Table 2. We quote
intrinsic (unabsorbed) fluxes and luminosities for the hard
nuclear component, and observed (absorbed) fluxes for the soft
diffuse component. For direct comparison with the XMM
analysis, we have also extracted a Chandra spectrum with
somewhat larger radius of 36″, corresponding to the XMM
source region described in the next section (Figure 1). Using
this larger source region has no significant effect on the spectral
parameters.

2.2. XMM-Newton

We use two subsequent observations of He 2–10 by XMM to
constrain the long-term variability of the source. The
XMM observations on 2004 May 27 and 2011 May 11 have
exposure times of 42 and 27 ks, respectively. For both
XMM observations, we reduced, cleaned, and extracted spectra
from all three CCD cameras: pn, MOS1, and MOS2. After
spectral extraction and analysis, the MOS1 and MOS2 data
yielded significantly lower S/N at energies >2 keV compared to
the pn detector, so that no useful constraints were obtained on
the hard emission from the nuclear point source. In what
follows we therefore focus on results from the pn.
The source extraction regions were 36″ in radius, chosen to

provide a balance between extracting as many counts as
possible from the source and minimizing the background. (As a
check, we have repeated the analysis using a smaller source
region of 25″ radius, and obtain essentially identical results
with marginally larger uncertainties.) The Chandra images
(Figure 1) show that the extent of both the nuclear and diffuse
components are substantially smaller than the 36″ extraction
region, such that they can both be considered as approximate
point sources for the XMM analysis. In both data sets the source
region was on-axis and did not lie on any chip gaps. We
extracted pn spectra for counts in the energy range 0.2–15 keV
and with event patterns 0–4. Response files were produced
from the XMM-Newton Current Calibration Files corresponding
to the time of this observation. The source ARF is calculated
including a correction for photons falling outside the extraction
region. This energy-encircled fraction (EEF) varies with
energy but is ≈85% at 5 keV. The source spectrum is described
with the same model as for Chandra, consisting of VMEKAL
and power-law components (Equation (1)).
To maximize the number of counts in the background

spectra and thus achieve the highest possible S/N, we extracted
the background spectrum from a large annulus of outer radius
3 arcmin around the source. Based on a number of trials, the
3 arcmin annulus was determined to provide the optimum
number of background counts without needing to account for
the variation in background flux at larger off-axis angles. Using
the SAS command edetect_chain, five sources in the pn
field of view were detected and subsequently excluded from the

Table 2
Spectral Fitting Results

VMEKAL (Diffuse) Power Law (Nuclear)

Observation kT −F0.5 3 keV NH,Nuclear Γ −F2 10 keV −L2 10 keV
a χν

2 (dof)
(keV) (10−13 erg cm−2 s−1) (1022 cm−2) (10−13 erg cm−2 s−1) (1039 erg s−1)

Chandrab (2001) 0.65 ± 0.03 2.06 ± 0.11 −
+4.61 1.26

1.67 [1.8] −
+3.28 0.64

0.73
−
+3.18 0.62

0.71 1.61 (46)
XMMc (2004) −

+0.58 0.03
0.02

−
+1.90 0.05

0.08 <0.05 [1.8] −
+0.68 0.07

0.08
−
+0.66 0.07

0.08 1.20 (661)
XMMc (2011) −

+0.58 0.03
0.02

−
+1.90 0.05

0.08 <0.05 [1.8] −
+0.44 0.10

0.09 0.43 ± 0.09 1.20 (661)
ASCA (1997) [0.65] −

+2.89 1.02
0.89

−
+0.30 0.30

3.83 [1.8] −
+1.79 0.87

1.66
−
+1.73 0.84

1.61 0.80 (70)

Notes. Best-fit spectral parameters obtained from modeling of the four X-ray spectra. The (unabsorbed) 2–10 keV fluxes were calculated based on the nuclear (power-
law) component, while the (observed) 0.5–3 keV fluxes correspond to the diffuse (VMEKAL) component. Both components are modified by Galactic absorption with

column density fixed at = ×N 9 10H,Gal
20 cm−2, and the VMEKAL component is absorbed by an additional component with column density fixed at

= ×N 9.7 10H,Diffuse
20 cm−2. Parameters in the table that are fixed in the fits are identified with brackets. Uncertainties represent 90% confidence intervals.

a Luminosity values were calculated assuming a distance of 9 Mpc to He 2–10.
b Parameters in the Chandra fits for the nuclear and diffuse components are determined from the fit to the nuclear and extended source regions, respectively, as
described in Section 2.1.
c The spectra for the two XMM observations are fitted simultaneously, with parameters for the diffuse (MEKAL) component tied between the two observations, as
described in Section 2.2.
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background region. With these sources excluded, the back-
ground region is ≈23 arcmin2 in area, or 20 times larger than
the source region. Because the background emission is
extended in nature, the ARF for the background region did
not include an EEF correction.

The pn background spectrum was fitted with two compo-
nents. The instrumental background is modeled by a power-law
continuum, plus Gaussian emission lines caused by fluores-
cence (Al K-α at 1.5 keV and CuNi K-α at 8.5 keV (Carter &
Read 2007). Because this instrumental background is produced
internally to the detector and is not affected by the mirror
response, in modeling the observed counts it was was
convolved with an RMF but not multiplied by an ARF. The
background line energies were determined from fitting each
line individually, and then fixed for the full spectral analysis,
while the intrinsic line widths are fixed to be consistent
with zero.

The sky background component is dominated by the diffuse
soft cosmic X-ray background (CXB), which can be modeled
as thin-thermal emission (Hickox & Markevitch 2006, 2007).
We used an APEC model for this component, to match the
spectral shape obtained by Hickox & Markevitch (2006) in
fitting the unresolved CXB spectrum in the ChandraDeep
Fields, fixing kT = 0.17 keV and allowing the normalization to
float. The hard (>2 keV) CXB can be described as a power law
owing to the summed emission from a large number of AGN
(e.g., Hickox & Markevitch 2006). We did not include this as a
separate component here, as the average expected numbers of
counts is <2% of the instrumental background, so its small
contribution to the total background flux can be effectively
accounted for in our modeling of the instrumental background.

The full model for the total observed emission in the
XMM source region is:

Data Source Instrumental BG Sky BG= + + . (2)

The source spectrum is modeled by an absorbed VMEKAL
and power law (Equation (1)), while the background
components are modeled, in XSPEC notation, as:

Instrumental BG = +
+ +
powerlaw gauss

gauss gauss (3)

and

Sky BG = APEC, (4)

where Instrumental BG is convolved with the RMF only,
while Source and Sky BG are convolved by the RMF and
multiplied by the ARF.

As discussed below, the fluxes of the nuclear power-law
component in the XMM observations are significantly smaller
than that observed for Chandra. To most accurately extract the
weak hard-X-ray signal from the significant background, we
modeled the data by simultaneously fitting the source and
background spectra, using the model given in Equation (2). We
account for the differences in area between the source and
background regions by setting the AREASCAL parameter on
the background spectrum. The spectral parameters of the
instrumental and sky backgrounds were fixed to be equal for
the source and background spectra. The source component is
also included in the background spectrum, but multiplied by a
factor 5 × 10−3 to approximately model the flux scattered
outside the source region into the background region. (The
scaling factor accounts for both the energy encircled fraction

and the relative area of the source and background regions; the
ultimate fit parameters are insensitive to the precise value of
this factor.)
Because the soft (VMEKAL) emission from the source is

diffuse (with a diameter of ≈5″ or 200 pc), and thus a light-
crossing time much longer than the separation in time between
observations, it should not be observed to vary in our data.
Therefore, to maximize the statistical power of our modeling,
we fitted the 2004 and 2011 XMM spectra simultaneously,
tying the temperatures and normalizations of the VMEKAL
and APEC components between the two data sets. We allowed
the the nuclear power-law normalization to float, along with the
instrumental background parameters (the particle background
in the detectors should not be perfectly constant for the duration
of the mission). We thus performed a simultaneous fit to four
spectra: source and background spectra from each of the 2004
and 2011.
The results of the spectral fitting are shown in Figure 2 and

listed in Table 2. We observe a clear decrease in the flux of the
hard nuclear component between the 2001 Chandra and 2004
XMM observations. This is demonstrated in Figure 3, in which
we show the 2004 XMM pn spectrum fitted with the 2001
Chandra best-fit model, with no model for the XMM
background included. This shows that the hard source flux
has dropped dramatically from the Chandra level, even before
accounting for the XMM background. We observe a further,
less significant decrease between the 2004 and 2011
XMM observations, while the flux of the diffuse (VMEKAL)
component is consistent with no variation from the Chandra
observation. We also observe evidence for a decrease in
absorption on the nuclear component, with NH,Nuclear consistent
with zero. The best-fit kT of the VMEKAL component for
XMM is close but not fully statistically consistent with the
Chandra data ( −

+0.58 0.03
0.02 keV compared to 0.65± 0.03 keV).

Fixing this temperature to the Chandra value has a negligible
effect on the flux of the diffuse component, but decreases the
flux of the hard nuclear component by ≈15%. This results in an
even larger observed drop in flux compared to the Chandra
data; in the following discussion we will conservatively
consider the smaller change in flux obtained when the
VMEKAL kT allowed to float for XMM. The flux of the
APEC component, representing the soft diffuse CXB,
corresponds to a 0.5–2 keV surface brightness of ±(2.9 0.5)
× −10 12 erg cm−2 s−1 deg−2, similar to the soft background
intensity obtained in the Chandra Deep Fields (Hickox &
Markevitch 2006). The overall implications of the spectral
fitting results are discussed in Section 3.
One potential uncertainty in our spectral analysis arises from

the implicit assumption that the instrumental and sky back-
ground in the source region has the same surface brightness to
the emission in the background region. It is possible that
fluctuations in the background could cause this assumption to
be invalid, leading to over- or under-subtraction of the
background, particularly at energies >2 keV where the back-
ground dominates the signal. To directly check the level of
possible fluctations, we extracted the 2–10 keV counts in 80
circular regions of 36″ radius (equal to the source region)
surrounding the source region. We avoid chip gaps and obvious
bright sources, noting that there is no bright point source
detected within 36″ in the 2–8 keV Chandra image (Figure 1).
The 2–10 keV counts in these apertures are approximately
normally distributed, with mean (dispersion) of 239 (19) and
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138 (15) counts for 2004 and 2011, respectively. We conclude
that our modeling of the background in the source region is
dominated by statistical error rather than any systematic
uncertainty due to background fluctuations.

2.3. ASCA

As a measurement of the baseline level of flux prior to the
Chandra observations, we also utilize observations of He 2–10
from ASCA in 1997. Due to ASCA’s poor angular resolution and
sensitivity relative to Chandra and XMM, it provides relatively
weak constraints on the source flux, particularly in the hard
nuclear component. We will therefore focus our conclusions
primarily on the Chandra and XMM data, but will utilize the
ASCA data here as a useful check on our conclusions.
He 2–10 was observed by ASCA for a total of 39.8 ks on

1997 November 30. We used Xselect v2.4b to remove time
intervals of high background for a net exposure of 22.4 ks, and
to extract source and background spectra from the cleaned
event files. We extracted a spectrum in the energy range
between 0.5–10.5 keV, using a source extraction region of
1.45 arcmin in radius. This source region was chosen to contain

Figure 2. X-ray spectra including model fits and residuals, for four X-ray observations of He 2–10. Each component of the model fitted to the data are shown as dotted
lines: the diffuse VMEKAL component (red) and nuclear power law (blue). For the Chandra observation (a) the background was subtracted before spectral fitting,
while for the XMM (b), (c) and ASCA (d) observations, the background spectra are fitted by a model(shown by the gray lines) simultaneously with fitting of the
observed source spectrum. There is a strong and significant detection of the hard nuclear power-law component in the 2001 Chandra (a) observation (clearly visible as
a point source in Figure 1). The hard component is significantly weaker in the XMM observations (b), (c) indicating variability by approximately an order of
magnitude. The hard component is also detected, at lower significance, in the 1997 ASCA spectrum (d).

Figure 3. Spectrum of the 2004 XMM observation, fitted with the source
spectrum from the 2001 Chandra observation. This fit includes no subtraction
or modeling of the XMM background. This large excess of the model over the
data at high energies clearly illustrates the dramatic decrease in the flux of the
hard nuclear component between 2001 and 2004, independent of the methods
used to account for the XMM background.
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as much of the source flux as possible (the energy encircled
fraction is 50%) while minimizing the contribution from
background. We extracted a background spectrum from a
rectangular annulus of area ≈5 times that of the source region,
located around the source position but excluding the source
region. The RMF and ARF response files were generated for
each chip using the commands sisrmg and ascaarf,
respectively. Furthermore, the spectra from the two chips SIS0
and SIS1 were added using the HEASOFT command
mathpha, while the response files were added with area
dependent weights using the commands addarf and
addrmf. As discussed in Section 2.2, the source ARF includes
a correction for the energy encircled fraction, while the
background ARF does not.

As with XMM, we modeled the ASCA data by fitting the
source and background spectra simultaneously, modeling the
scattered flux in the background region assuming an energy-
encircled fraction of 0.5. The instrumental background was
modeled with a power law plus five Gaussian emission lines;
three were included in the model as narrow fluorescence lines
stemming from the device itself at 6.5, 7.5, and 8.2 keV, which
are the Fe and Ni K-α lines and the Ni K-β line.9 Another
Gaussian at 3.3 keV of unknown origin was introduced to fit a
feature of the background spectrum, while the final Gaussian
was a broad line at 11 keV that modeled the internal
background above 7 keV to account for the steepness of the
power law.

We utilized the same source and sky background models as
for XMM (Equations (1) and (4)). Because they cannot be
well-constrained owing to the poor photon statistics, the surface
brightness of the APEC component and the VMEKAL
temperature are fixed to the values obtained with XMM, and
the photon index of the power law is again fixed to Γ = 1.8.
(Allowing the VMEKAL temperature to float yields a
significantly higher ≈kT 0.9, inconsistent with the XMM and
Chandra results, but has a negligible effect on the total fluxes
of the diffuse and nuclear components.) The results of the
ASCA spectral fitting are shown in Figure 2 and listed in
Table 2. We obtain a significant detection of both the diffuse
and nuclear spectral components, although with significantly
larger uncertainties than in the Chandra and XMM data. In
contrast to the XMM observations, the fit yields significant
nuclear absorption consistent with the Chandra value, although
the precise value of NH is poorly constrained.

3. RESULTS AND DISCUSSION

The long-term X-ray light curve of He 2–10, showing
variations in the VMEKAL and power-law components, are
shown in Figure 4. The diffuse component shows no significant
variability over the four observations, as expected for emission
from a large-scale diffuse plasma. In contrast, it is immediately
clear that there is significant variability in the hard power-law
component. The luminosity of the nuclear source decreased
significantly between the 2001 Chandra and 2004 XMM
observations, and by approximately an order of magnitude
between 2001 and the 2011 XMM observation. (We note that
our overall conclusions are unchanged if we use observed hard
fluxes, which differ by roughly 30% from the values shown in
the Table 2 for the Chandra and ASCA observation and remain
constant for XMM due to the decreased levels of obscuration.)

The variation in the light curve of hard spectral component
He 2–10 over approximately an order of magnitude in LX
confirms that this emission is the result of a single object, rather
than several separate sources. This allows us to perform
comparisons to other individual astrophysical sources. One
class of object that can have similar X-ray and luminosities and
amplitudes of variability is SNe (see Dwarkadas &
Gruszko 2012 for a compilation of published SN X-ray light
curves). However, an SN interpretation for the nuclear source
is inconsistent with the radio properties. The radio flux of He
2–10 has been measured at 5 GHz with the VLA in 1994
(0.89± 0.18 mJy; Kobulnicky & Johnson 1999) and 2004
(0.86± 0.02 mJy; Reines et al. 2011), implying no significant
change in the radio flux with time. Long Baseline Array
measurements in 2011 at 1.4 GHz yield a flux of 0.98±
0.21 mJy in a compact source on ≈1 pc spatial scales;
assuming a typical radio spectral index, this implies that
roughly half of the observed 5 GHz flux comes from the central
compact source (Reines & Deller 2012). High Sensitivity
Array observations in 2005 did not detect the compact source
on extremely small (∼0.1 pc) spatial scales (Ulvestad
et al. 2007), placing a lower limit on its spatial extent. This
rules out the presence of a single very young SN, however, the
total radio luminosity of the source would imply that any single
SN must be at most decades old (Fenech et al. 2010).
With these constraints in mind, we test whether the nuclear

source in He 2–10 is consistent with a (relatively) evolved SN
explosion, by comparing its (unabsorbed) soft-X-ray and
5 GHz radio light curves to a sample of seven SNe that have
both radio and X-ray measurements in the compilations of
Dwarkadas & Gruszko (2012) and Weiler et al. (2002).
Assuming that the nuclear source in He 2–10 has a relatively
constant 5 GHz flux between 1994 and 2004, and conserva-
tively assigning all of the 5 GHz flux observed with the VLA
(≈0.9 mJy) to the central compact component, we find that the
ratio of X-ray (0.5–2 keV) to radio (ν νF at 5 GHz) for He 2–10
is ∼ ×5 103. This is more than an order of magnitude larger
than the typical X-ray to radio flux ratio for X-ray-detected SNe
at ages >1 year, and 2.5 times larger than the most extreme
observed values, in SNe 1980K and 1970G. Furthermore, the
detection of the nuclear hard-X-ray component in the
ASCA observation indicates that the X-ray light curve rises or

Figure 4. Fourteen year light curve of He 2–10 with 90% confidence errors
shown. The hard nuclear flux (blue) declines between the 2001 Chandra and
2011 XMM observations by nearly an order of magnitude. In contrast, the soft
diffuse flux (red), remains approximately constant between the four
observations.

9 https://heasarc.gsfc.nasa.gov/docs/asca/newsletters/sis_back2.html
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remains constant, and then declines sharply over a few years.
This behavior is unusual for SNe; of the eight SN X-ray light
curves in the compilation of Dwarkadas & Gruszko (2012) that
extend beyond 10 years, none shows a similar sudden, rapid
decline on these timescales. We also note that the X-ray to
radio flux ratio is consistently at least two to three orders of
magnitude smaller than the typical ratio of X-ray to compact
radio flux for ULXs, for which the compact sources tend to be
weak or undetected in the radio (e.g., Middleton et al. 2013;
Wolter et al. 2014). Given the observed X-ray light curve and
the ratio of X-ray and radio luminosities, we conclude that the
observations do not favor an SN or ULX origin for the nuclear
source.

In contrast, the significant variability of the hard nuclear
X-ray source in He 2–10 is consistent with its identification as
an accreting massive BH, in comparison to the X-ray
variability of known low-mass AGN. The Sdm spiral galaxy
NGC 4395, at a distance of only 4Mpc, contains a BH of mass

× ☉M3.6 105 , whose hard component, as is shown in King
et al. (2013), can vary by a factor of five on a timescale of just
one day. The nearby edge-on Seyfert 2 galaxy NGC 4945, with
a BH mass obtained through observations of its H20
megamaser of ≈ ☉M106 , shows intrinsic variability (measured
at >8 keV by RXTE and Swift/BAT) of at least an order of
magnitude on timescales of days to weeks (e.g., Mueller
et al. 2004; Marinucci et al. 2012). The AGN in the nearby
Seyfert 1 galaxy NGC 4051 ( = × ☉M M1.73 10BH

6 ; Denney
et al. 2009) has been observed to vary in X-ray luminosity by
more than an order of magnitude over ∼year timescales (Uttley
et al. 1999). This limited survey confirms that X-ray variability
over a large dynamic range on timescales of years is not
uncommon among relatively low-mass AGNs. Therefore, the
decreased observed luminosity after the Chandra observations
could either be due to short timescale fluctuations occurring
precisely at the time of the observation, as in NGC 4945, or
part of a general trend of long timescale variability, similar to
objects like NGC 4051.
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