26 research outputs found
Direct numerical simulation of the autoignition of a hydrogen plume in a turbulent coflow of hot air
The autoignition of an axisymmetric nitrogen-diluted hydrogen plume in a turbulent coflowing stream of high-temperature air was investigated in a laboratory-scale set-up using three-dimensional numerical simulations with detailed chemistry and transport. The plume was formed by releasing the fuel from an injector with bulk velocity equal to that of the surrounding air coflow. In the ‘random spots' regime, autoignition appeared randomly in space and time in the form of scattered localized spots from which post-ignition flamelets propagated outwards in the presence of strong advection. Autoignition spots were found to occur at a favourable mixture fraction close to the most reactive mixture fraction calculated a priori from considerations of homogeneous mixtures based on inert mixing of the fuel and oxidizer streams. The value of the favourable mixture fraction evolved in the domain subject to the effect of the scalar dissipation rate. The hydroperoxyl radical appeared as a precursor to the build-up of the radical pool and the ensuing thermal runaway at the autoignition spots. Subsequently, flamelets propagated in all directions with complex dynamics, without anchoring or forming a continuous flame sheet. These observations, as well as the frequency of and scatter in appearance of the spots, are in good agreement with experiments in a similar set-up. In agreement with experimental observations, an increase in turbulence intensity resulted in a downstream shift of autoignition. An attempt is made to understand the key processes that control the mean axial and radial locations of the spots, and are responsible for the observed scatter. The advection of the most reactive mixture through the domain, and hence the history of evolution of the developing radical pools were considered to this effec
Three-dimensional simulations of premixed hydrogen/air flames in microtubes
The dynamics of fuel-lean (equivalence ratio φ = 0.5) premixed hydrogen/air atmospheric pressure flames are investigated in open cylindrical tubes with diameters of d = 1.0 and 1.5 mm using three-dimensional numerical simulations with detailed chemistry and transport. In both cases, the inflow velocity is varied over the range where the flames can be stabilized inside the computational domain. Three axisymmetric combustion modes are observed in the narrow tube: steady mild combustion, oscillatory ignition/extinction and steady flames as the inflow velocity is varied in the range 0.5 ≤ UIN ≤ 500 cm s−1. In the wider tube, richer flame dynamics are observed in the form of steady mild combustion, oscillatory ignition/extinction, steady closed and open axisymmetric flames, steady non-axisymmetric flames and azimuthally spinning flames (0.5 ≤ UIN ≤ 600 cm s−1). Coexistence of the spinning and the axisymmetric modes is obtained over relatively wide ranges of UIN. Axisymmetric simulations are also performed in order to better understand the nature of the observed transitions in the wider tube. Fourier analysis during the transitions from the steady axisymmetric to the three-dimensional spinning mode and to the steady non-axisymmetric modes reveals that the m = 1 azimuthal mode plays a dominant role in the transition
Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames
Numerical simulations with single-step chemistry and detailed transport are used to study premixed hydrogen/air flames in two-dimensional channel-like domains with periodic boundary conditions along the horizontal boundaries as a function of the domain height. Both unity Lewis number, where only hydrodynamic instability appears, and subunity Lewis number, where the flame propagation is strongly affected by the combined effect of hydrodynamic and thermodiffusive instabilities are considered. The simulations aim at studying the initial linear growth of perturbations superimposed on the planar flame front as well as the long-term nonlinear evolution. The dispersion relation between the growth rate and the wavelength of the perturbation characterizing the linear regime is extracted from the simulations and compared with linear stability theory. The dynamics observed during the nonlinear evolution depend strongly on the domain size and on the Lewis number. As predicted by the theory, unity Lewis number flames are found to form a single cusp structure which propagates unchanged with constant speed. The long-term dynamics of the subunity Lewis number flames include steady cell propagation, lateral flame movement, oscillations and regular as well as chaotic cell splitting and mergin
Lattice Boltzmann method for direct numerical simulation of turbulent flows
We present three-dimensional direct numerical simulations (DNS) of the Kida vortex flow, a prototypical turbulent flow, using a novel high-order lattice Boltzmann (LB) model. Extensive comparisons of various global and local statistical quantities obtained with an incompressible-flow spectral element solver are reported. It is demonstrated that the LB method is a promising alternative for DNS as it quantitatively captures all the computed statistics of fluid turbulenc
Fundamental Aspects of Jet Ignition for Natural Gas Engines
© 2017 SAE International. Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid. At the interface between these layers, a cylindrical reaction zone is formed that propagates in the main chamber in the axial direction assisted by convection in the jet, but with limited propagation in the cross-stream direction. For small orifice diameters, this cylinder is too thin, and the stretch rates are too high, for a vigorous reaction zone to escape the pre-chamber, making the subsequent ignition more difficult. The methane jet flame is much weaker than the one from ethylene, consistent with the lower flame speed of methane that suggests curvature-induced quenching at the nozzle and by turbulent stretch further downstream. The velocity of the jet is too high for the ambient turbulence to influence the jet, although the latter will affect the probability of initiating the main premixed flame. The experimental and modelling results are consistent with ongoing Direct Numerical Simulations at ETH Zurich
Lattice Boltzmann method for direct numerical simulation of turbulent flows
We present three-dimensional numerical simulations (DNS) of the Kida vortex flow, a prototypical turbulent flow, using a novel high-order lattice Boltzmann model. Extensive comparisons of various global and local statistical quantities obtained with an incompressible flow spectral element solver are reported. It is demonstrated that the lattice Boltzmann method is a promising alternative for DNS as it quantitatively capturesall the computed statistics of fluid turbulence