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Torus breakdown in noninvertible maps
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We propose a criterion for the destruction of a two-dimensional torus through the formation of an infinite set
of cusp points on the closed invariant curves defining the resonance torus. This mechanism is specific to
noninvertible maps. The cusp points arise when the tangent to the torus at the point of intersection with the
critical curvel 4 coincides with the eigendirection corresponding to vanishing eigenvalue for the noninvertible
map. Further parameter changes lead typically to the generation of (selfsntersections of the invariant
manifoldg followed by the transformation of the torus into a complex chaotic set.

DOI: 10.1103/PhysRevE.67.046215 PACS nuni)er05.45.Xt

[. INTRODUCTION dergoes a Hopf bifurcation or a sequence of period dou-
blings. The consistency of these scenarios has been tested in
Torus destruction through the loss of smoothness is aeveral numerical studies, e.g., by Curry and Ydi&eand
common phenomenon in systems that display quasiperiodidsy Aronsonet al. [10]. It has also been shown that torus
ity and phase lockingl]. Together with the period doubling destruction can take place through a crisis involving the col-
and intermittency transitions, torus destruction representision with its basin boundarj11].
one of the classical routes to chaos in dissipative systems, The torus destruction scenarios apply to smooth systems
and torus destruction has attracted considerable interest and to systems that can be represented by two-dimensional
connection with studies of the onset of turbuleh2g Ex-  invertible maps. For nonsmooth systems, modifications arise
amples of torus destruction have also been described fan connection with the occurrence of so-called border colli-
coupled(or forced oscillator systems in physi¢8§], biology  sion bifurcations by which, for example, the transformation
[4,5], and other fields of sciend®,7]. of a node into a focus can occur abrupfiy2]. The purpose
In their seminal paper on the breakdown of two- of this paper is to describe a mechanism that is specific to
dimensional tori, Afraimovich and Shilnikoy8] outlined  noninvertible maps where the invariant manifold defining the
three possible scenarios for the destruction of a torus arisingprus can intersect itself. This gives rise to cusp points fol-
as a Poincarsection of a quasiperiodic flow. In all scenarios, lowed by the transition to a characteristic loop structure that
the starting point is a smooth torus in a resonance regiogannot occur for invertible maps. We show how the self-
where a stable periodic orbiitode coexists with an unstable intersection mechanism can operate in conjunction with the
orbit (saddle cyclgof the same periodicity. The torus itself is invertible mechanisms described by Afraimovich and Shilni-
defined as the closure of the unstable manifolds of the saddiov and establish the criterion for the self-intersections of the
cycle with the points of the saddle and stable node. In onévariant manifolds to emerge.
scenario, the unstable manifolds from the saddle cycle start Noninvertible two-dimensional maps arise, for instance,
to develop wrinkles as they approach the points of the stabl# the study of chaotic synchronizatiga3]. Evidence of a
node. In this way, the torus becomes nondifferentiable idoop structure of the invariant manifold was also observed by
these points. As the system, under variation of a parameteorenz [14] in a study of computational chaos, by Anish-
leaves the resonance zone, wrinkles and nonsmoothnegsBenkoet al. [15] in a study of the destruction of three-
spread along the invariant manifolds, and the torus breaks ugimensional tori in a periodically forced system of two
into a fractal structure. coupled logistic maps, and by Frouzakisal.[16] in a study
In another scenario, the unstable manifolds from theof a model-reference, self-adapting control system. A pre-
saddle cycle start to intersect the nonleading manifolds of théminary investigation of the mechanisms for torus destruc-
node. This produces an infinitely folded structure accumulattion of noninvertible maps was also reported by Maistrenko
ing at the node points, where the torus again loses it§tal.[17].
smoothness. The torus is destructed when this folded struc- In the case of noninvertible majgsR*— R?, we find that
ture makes contact with the stable manifold of the sameé new bifurcation can take place after the torus has become
saddle cycle in a homoclinic tangency. Finally, in the thirdnonsmooth and before it is destroyed. Let us illustrate this
scenario, the stable node is transformed into a stable focugansition for a situation that corresponds to the first of the
and the unstable manifolds from the saddle cycle start t@bove mentioned scenari¢arinkled route to destruction
spiral around the focus points. The focus subsequently urAs shown in Fig. 1), the resonance toru3, loses its
smoothness at the poift,, of the stable node due to folding
of the unstable manifolvy that connects the sadd@;, to
*Electronic address: maistren@nas.gov.ua the nodeP,. The first folding[indicated by an asterisk in
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FIG. 1. Schematic representation of the transition from a non-
smooth resonance tor(ds via a cusp torud . to a loop torusT, . 085
WSJ) represents the unstable manifold from the saddle pQint P+ D (b)
toward the node poin®,,. The first pointO of self-intersection of
W(Q“) must have two different preimag€s andO, both belonging T L,
toT,.
. . . . . . y
Fig. 1(a)] is repeated indefinitely as the manifold approaches
P, with the scales of the successive foldings decreasing in 05 L, .
accordance with the eigenvaluesiyf,. )
If the map is noninvertible, the further evolution of the T \p,
unstable manifolo\Ng‘) can give rise to the appearance of 035

cusp pointgFig. 1(b)] followed by the formation of loops 035 05 x 0.85
[Fig. 1(c)]. We find that the cusp points arise when the tan-

gent of the unstable manifolwg’) at the point of intersec-
tion with the critical curvely coincides with the eigendirec-
tion of vanishing eigenvalue fdf. We conclude that there
can be two new characteristic shapes for a torus in the ca
of noninvertible maps: the cusp toriis [Fig. 1(b)] and the
loop torusT, [Fig. 1(c)]. Note that the topological structure
of the loop torusT, is different from that of a circle. Indeed,
T, is no longer homeomorphic to a circle but endomorphic
only to it. For the loop torug, the first intersection point
O e T, must have two preimaged,+ O, belonging toT,.
Therefore, the restrictioR of the mapF to the torusT, is
also noninvertible. Moreover, we conclude that the transitio

from T, to T, happens just at the moment when the rigp through an Andronov-Hopf bifurcation of an asymmetric

on the torusT, becomes noninvertible. cycle P, giving rise to a stable invariant curve, i.e., a toflus

q V:/r'th fLérgzer parrzmr(]atervyi?rzlatlog, ';ihe Iogpltoﬂ]sc?n tt;e H?ig. 2(@)], which then transforms into a resonance toFis
estroye accordance scenarios analogous to those Fig. 2(a), the torusT does not yet intersect the critical

the invertible case. linesL of the mapF, while in Fig. 2b) such an intersection

has occurred.
Il. CUSP AND LOOP TORI FOR NONINVERTIBLE MAPS By a critical line LO of the mapF, we mean a curve in

phase space where the Jacobian determinant vanishes,

FIG. 2. Phase portraits for the recurrent map systénwith a
coupling parametes =1.285(a) ande =1.300(b). In both figures,
the nonlinearity parametea=2.95. In (b) the symmetric toriT
intersect the critical line& y at which the Jacobian determinant of
SFe map vanishes.

The recurrent map systefi) as well as various generali-
zations have been intensively studied in the past years
[18,19. In particular, maps of this type have been used in the
study of chaotic synchronizatidri.3] and clusterind20]. It
was observed in these studies that after the riddling and
blowout bifurcations of the chaotic synchronous state, the
rHynamics of the coupled map systéf) typically develops

Let us illustrate the sequence of torus bifurcations for
two-dimensional, noninvertible maps by means of the model IDF|
DF|=0.
Xnt1=F(Xp) +&[f(yn) —f(X,)]
The concept of critical curves for two-dimensional nonin-
Vne1=T(yn) e[ f(X,)—f(yn)], (1)  vertible maps and the role that the iterates of these curves
play in delineating the so-called absorbing afead, hence,
of two coupled logistic maps. Here the one-dimensional maghe chaotic attractgrwere introduced and extensively ap-
f=f,=ax(1—x), xe[0,1],0<a<4, withn=0,1,... de- plied by Gumowski and Mir§21] and by Miraet al.[22,23].
noting a discrete time variable. The two-dimensional rRap Critical curves represent a generalization of the well-known
defined by Eq(1) has two parameters, of whicdcontrols concept of critical points for one-dimensional noninvertible
the nonlinearity of the logistic map and is the coupling maps, i.e., points at which the map has vanishing slope and
parameter. where the number of preimages suddenly changes.

046215-2
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For the considered map of the form (1), the Jacobian 0.511 @
determinant vanishes at two perpendicular lines0.5 and - . T ©
y=0.5. Hence, the critical curvds, are found agsee Fig. K Yo
2) y

Lo={x=0.5U{y=0.5.
L, P
Moreover, while the position of the cycRRand the diameter 0.499
of the torusT depend ora ande, the critical lines are inde- 08877 x 08888
pendent of these parameters. 0.512

The resonant torus, in Fig. 2(b), although it intersects
the critical lineL,, is still associated with an invertible dy-
namics: the mapping along the torug is one to one. With
further parameter variatior;; becomes noninvertible. This Y
happens when the tangent to the tofus the point of in-
tersection with the critical lind coincides with the direc-

tion of vanishing eigenvalue fdt. Due to the symmetry df 0.499
with respect to the diagonal, we need to consider only one 0.3876 x 0.8836
torus T [e.g., the right-hand side of Fig.(l®]. This torus 0513

intersects the horizontal part bf. It is easy to show that the

eigenvectors corresponding to the zero eigenvalue of the

mapF at the critical lineL; are vertical. Hence, we conclude

that cusp points on the torus arigbe cusp torud . appears y
when the tangent to the torus at the point of intersection with

L, becomes vertical.

Figure 3 shows the main stages in this transformation. 0499
Here,a=3.86 while the coupling parameter is changed from 0.8875 x 0.88855
£=0.90448 (a) over £=0.90452(b) to £€=0.90455(c). N .

With these parameter values, we are operating in a resonance FIG- 3. Transition from a nonsmooth resonance tofusia a
zone with a stable period-15 node and a saddle cycle of thgHsp torusT ¢ to a loop torusT, f_or the case Whe_n the stable cycle is
same periodicity. This region of operation was chosen bed "0de.a=3.86. The coupling parameter is changed fram
cause the poinP of the node falls very close to the critical _ 0:20448(2 overs=0.90452(b) to &= 0.904 55(¢). The cusp
line Ly. This allows us to follow the loop formation in real torusT, arises whe_n the unstable manif intersects the criti-
(i.e.. undistorteyiscale. cal line L, perpendicularly.

As before,Wg‘) denotes the unstable manifold of the is smooth, except in the points of the focus. At the moment
saddle cycleli represents the normal to the critical ling ~ When the unstable manifold/,’ intersects the critical line
Lo perpendicularly, the unstable manifold develops an infi-
nite set of cusp point$Fig. 4(b)], and when the angler

andk is the tangent tavy in the point of intersection be-

tweenL, andWg" . In Fig. a), WY is folded such that the R _ :
torus is already nonsmooth at the pokt However,WE?”) betweeru andk changes sign, a loop tords developgFig.

. . S . 4(c)].
intersectd. in such a direction that the dynamics aldﬂ@‘) ©]

is invertible. In Fig. 3b), k has become vertical and now [ll. TRANSITION TO CHAOS
coincides with the direction of vanishing eigenvalue For

This is the moment of formation for the cusp tofTis. Now As noted in the Introduction, torus breakdown represents

the unstable manifold has acquired an infinite number o ne of the three classic routes to chaos in dissipative sys-
: : S ems. Let us therefore follow the development of a loop torus

nonsmooth points. Fmally, " F'g'u@.’ the angleq has 5 the system leaves the resonance zone.

changed sign, the dynamics aloldy’ is no longer invert- To illustrate this transition, we have chosen to consider a

ible, and an infinite sequence of loops has developed alongomewhat different region of parameter space where we find
the manifold. Hence, we have observed how the transformag resonance torus with period-5 dynamics. The reason for

tion proceeds through the following steps: this choice is that, in the examples we will consider, the
transition to chaos maintains the looplike structure whose
Tr=Teusg= Tioop- (20 mechanism of creation was explained in Sec. II.

Figure 5 provides an overview of the relevant part of the
Figure 4 illustrates the bifurcation sequence in the cas@arameter space. In the lower left corrigray shaded re-
when the poin® is a focus, i.e., the resonance tofishas  gion), the two-dimensional mafil) displays a stable asym-
lost its smoothness with the eigenvalues®diecoming com-  metric fixed pointactually, of course, two mutually symmet-
plex. ric fixed points as illustrated in Fig.)2At the transition to
We are still considering a resonance zone with a period-1%he unshaded zone, the fixed point undergoes an Andronov-
cycle. Fora=3.867 85 and:=0.903 25 Fig. 4@)], the torus  Hopf bifurcation for maps, and for parameter combinations

046215-3



MAISTRENKO, MAISTRENKO, AND MOSEKILDE PHYSICAL REVIEW E67, 046215 (2003

0.501 PACPANN
(a)

stable fixed point

2.68
1.36 € 1.64

0.493 _ , . . .
0.88935 . 0.88975 FIG. 5. Two-dimensional bifurcation diagram for the coupled

map systentl). The curves 1 and 2 delineate a region with period-5
0.501 resonance behavior. At the dotted curve, the stable period-5 cycle is
b transformed from a node into a focus. Curve 3 is an Andronov-Hopf
bifurcation curve for the period-5 orbit.

the left in the figure, the coupled map system displays a
resonance torus with loops and is negative. Whera is
increased, transitions between periodic,€0), quasiperi-
odic (\;=0) and chaoticX,>0) dynamics occur extremely
fast. The second Lyapunov exponentremains negative.
Figure 7 illustrates the changes of the stationary solution
to Eq. (1) that take place as the system leaves the resonance
0493 tongue in the direction of the arrow from poiftin Fig. 5. In
0.8894 x 0.3897 Fig. 7(a), we still have the characteristic structure of a loop
torus. As beforeP represents the stable node, aNg‘) is the
(© unstable manifold that approachBsfrom the saddle cycle
(not shown. Here a=2.766 ande=1.54. In Fig. 7b), a
=2.7738 ande=1.533 85. It is interesting to note that how
the overall structure of the loop torus is maintained as the
loop is broken and the system becomes chaotic. For the pa-
rameters of this figure, the Lyapunov exponents are
=0.0145 and\,= —0.028. Hence, the Lyapunov dimension
D, =1.52. In Fig. Tc), the system has moved a little further
out of the resonance tongue. Wita=2.774 and e
=1.5339, we now have.;=0.013, A\,=-0.021, andD,
=1.62. Initial conditions are always chosen in a neighbor-
0493 hood of CA.

0.88935 X 0.88965

0.501

=4

FIG. 4. Transition from a nonsmooth resonance tofywvia a 0.045
cusp torusT to a loop torusT, for the case when the stable cycle is
a focus. Herea=3.867 85 ands =0.903 25(a), a=3.867 90 and
£=0.903 25(b), a=3.868 00 anc: =0.903 45(c). A

1

to the right of this bifurcation curve, we observe quasiperi-
odic dynamics(on an ergodic torysfollowed by resonant
behavior and chaos. Curves 1 and 2 delineate the region of 0.0 |
period-5 resonant dynamics. In the lower part of this tongue
(below the doted curyethe stable period-5 cycle at the torus
is a node. Above the dotted curve, the period-5 cycle is a
focus. Finally, the focus loses stability in an Andronov-Hopf -0.025
bifurcation at curve 3. Above this curve, another region of 2.766 a 2775

quasiperiodic dynamics can be found as well as resonance fiG. 6. Variation of the largest Lyapunov exponantwith the
zones, including a region with period-15 dynamics. nonlinearity parametea. The coupled map system leaves the

Figure 6 demonstrates the rapid variation of the largesperiod-5 Arnol'd tongue aa=2.7662. Note the extremely rapid
Lyapunov exponenk ; that takes place as the system leavesransition between periodic\(<0), quasiperiodic X;=0), and
the period-5 resonance zone, starting from péirisee Fig. chaotic ¢,>0) dynamics immediately outside the tongue.
5) ate=1.54 anda=2.766 in the direction of the arrow. To =1.54.

046215-4
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0.488

0.56

0.32

0.697 X 0.6992

s 0.49

T (b)

0.42
0.69 X 0.701

FIG. 8. Fully formed chaotic attract@@ A outside the period-5
Arnol'd tongue(a). The Lyapunov dimension is nol¥, =2.0. One
can still observe the signatures of the period-5 resonance dynamics
and of the self-intersecting manifolds. Magnification of par{@f
(b). Parameter values aee=2.774,e=1.535.

be identified between the transition in which the invariant

curve becomes nonsmooth and its final breakdown.

0.70 To simplify the discussion, we considered a system of two
nonlinearly coupled logistic map. Here, the critical curves

FIG. 7. Transition from loop toru$, to chaotic attractoCAas  gre two straight lines, perpendicular to one another. In the

the system passes out through the period-5 Arnol'd tongue in th%eneral case. the mappirﬁngaRz may be represented as
direction of the arrow from poin# of Fig. 5.a=2.7660,s=1.54 '

(), a=2.7738, £=1.53385(b), and a=2.7740, e =1.5339 (c). (x> (U(X,y)>
H 1

0.47
0.694

Note how the characteristic loop structure is maintained in the ini-
y

tial stages of the torus breakdown.

with ue C! andv e C!. The functionF has partial deriva-
tives Uy (X,y), uy(x,y), vx(x,y), andvy(x,y) in all points.
However, ifF is noninvertible, it has a direction of vanishing
Serivative along a critical curvesy where the Jacobian de-
%erminantDF=0.
When the invariant manifold of a saddle cycle crosses the
tical curve in the direction of vanishing derivative fBr
an infinite set of cusp points arise. As the parameters of the
system are changed, the cusp points develop typically into

v(X,y)

Figure 8 presents a picture of the full chaotic attra€iéx
for a=2.774 ands = 1.535. Although the Lyapunov dimen-
sion now isD| =2.0, one can easily observe the signature
both of the original period-5 node and of the self-intersectin
manifolds of the resonance torus. Figue)ds a magnifica-
tion of the part of the chaotic attractor, corresponding to theCri
region delineated by the dotted square in Fi@)8

IV. CONCLUSION loop points, and the closed invariant curve will no longer be
) ) . homeomorphic to a circle.
Gumowski and Mira[21] and Mira et al. [22,23 have We have demonstrated how this loop structure arises in

developed the concept of critical curves for two-dimensionakonnection with two of the Afraimovich-Shilnikov scenarios,
noninvertible maps and discussed the bifurcations of invari; e in connection with the developments of both wrinkles
ant manifolds in COI’]I’IeCtion W|th their Se|f-intersecti0ns. Weand Spira's on the invariant manif0|d_ We have a|so Shown
structure to arise and to illustrate how the loop formationpreak up.

mechanism works in conjunction with the classic

Afraimovich-Shilnikov scenarios of torus breakdown. It was

possible to clearly distinguish the processes that are associ-

ated with the lack of invertibility for the map. In particular, ~ We thank L.P. Shilnikov for a number of illuminating dis-
an additional bifurcatioriin which the closed invariant curve cussions. V. and Yu. Maistrenko acknowledge financial sup-
develops an infinite set of cusp points and then Ip@psild  port from Danish Graduate School in Nonlinear Science.
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