137 research outputs found
A compact high-flux source of cold sodium atoms
We present a compact source of cold sodium atoms suitable for the production
of quantum degenerate gases and versatile for a multi-species experiment. The
magnetic field produced by permanent magnets allows to simultaneously realize a
Zeeman slower and a two-dimensional MOT within an order of magnitude smaller
length than standard sodium sources. We achieve an atomic flux exceeding 4x10^9
atoms/s loaded in a MOT, with a most probable longitudinal velocity of 20 m/s,
and a brightness larger than 2.5x10^(12) atoms/s/sr. This atomic source allowed
us to produce a pure BEC with more than 10^7 atoms and a background pressure
limited lifetime of 5 minutes.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
Dynamical Equilibration Across a Quenched Phase Transition in a Trapped Quantum Gas
The formation of an equilibrium quantum state from an uncorrelated thermal
one through the dynamical crossing of a phase transition is a central question
of non-equilibrium many-body physics. During such crossing, the system breaks
its symmetry by establishing numerous uncorrelated regions separated by
spontaneously-generated defects, whose emergence obeys a universal scaling law
with the quench duration. Much less is known about the ensuing re-equilibrating
or "coarse-graining" stage, which is governed by the evolution and interactions
of such defects under system-specific and external constraints. In this work we
perform a detailed numerical characterization of the entire non-equilibrium
process, addressing subtle issues in condensate growth dynamics and
demonstrating the quench-induced decoupling of number and coherence growth
during the re-equilibration process. Our unique visualizations not only
reproduce experimental measurements in the relevant regimes, but also provide
valuable information in currently experimentally-inaccessible regimes.Comment: Supplementary Movie Previes: SM-Movie-1: https://youtu.be/3q7-CvuBylg
SM-Movie-2: https://youtu.be/-Gymaiv9rC0 SM-Movie-3:
https://youtu.be/w-O2SPiw3nE SM-Movie-4: https://youtu.be/P4xGyr4dwK
Phase Noise in Real-World Twin-Field Quantum Key Distribution
The impact of noise sources in real-world implementations of twin-field quantum key distribution (TF-QKD) protocols is investigated, focusing on phase noise from photon sources and connecting fibers. This work emphasizes the role of laser quality, network topology, fiber length, arm balance, and detector performance in determining key rates. Remarkably, it reveals that the leading TF-QKD protocols are similarly affected by phase noise despite different mechanisms. This study demonstrates duty cycle improvements of over a factor of two through narrow-linewidth lasers and phase-control techniques, highlighting the potential synergy with high-precision time and frequency distribution services. Ultrastable lasers, evolving toward integration and miniaturization, offer promising solutions for agile TF-QKD implementations on existing networks. Properly addressing phase noise and practical constraints allows for consistent key rate predictions, protocol selection, and layout design, crucial for establishing secure long-haul links for the quantum communication infrastructures under development in several countries.This study explores the impact of various noise sources on twin-field quantum key distribution (TF-QKD) systems, focusing on phase noise from photon sources and fibers. Results show that different TF-QKD protocols are similarly affected by phase noise. Techniques like using ultrastable lasers and phase stabilization can double key rates, promising secure long-distance quantum communication infrastructures. imag
Partialization losses of ON/OFF operation of waterto- water refrigeration/heat-pump units
[EN] This paper presents the results of an experimental campaign for the characterization of the dynamic behavior of a water-to-water refrigeration/heat-pump unit under ON/OFF operation.
The unit was previously tested at different water inlet temperatures under steady
state conditions, and a very good agreement was found between the instantaneous dynamic performance of the heat pump and the corresponding quasi-steady state operation.
In parallel, a series of tests were carried out to quantify the coefficient of performance
(COP) degradation as a function of the load ratio, and a simple formula for the Part Load
Factor is presented. Results lead to the conclusion that the only non-negligible factor in the COP degradation is the stand-by electrical consumption during the OFF period, especially at low load ratios. Finally, it is concluded that the minimization of the stand-by consumption is a key point for the future improvement of the seasonal performance of water-to-water systems.This research has been partially funded by the European FP7 framework project "Advanced ground source heat pump systems for heating and cooling in Mediterranean climate" (GROUND-MED) and the Spanish Ministry of Economy and Competitiveness (MINECO) through the project "Estudio de evaporadores y condensadores basados en tecnologia de minicanales para su aplicaciOn en equipos de aire acondicionado, refrigeraciOn y bomba de calor estacionarios" with reference DPI2011-26771-C02-01. The authors gratefully acknowledge their financial support.Corberán, JM.; D.Donadello; Martínez Galván, IO.; Montagud, C. (2013). Partialization losses of ON/OFF operation of waterto- water refrigeration/heat-pump units. International Journal of Refrigeration. 36(8):2251-2261. https://doi.org/10.1016/j.ijrefrig.2013.07.002S2251226136
Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate
When a system crosses a second-order phase transition on a finite timescale,
spontaneous symmetry breaking can cause the development of domains with
independent order parameters, which then grow and approach each other creating
boundary defects. This is known as Kibble-Zurek mechanism. Originally
introduced in cosmology, it applies both to classical and quantum phase
transitions, in a wide variety of physical systems. Here we report on the
spontaneous creation of solitons in Bose-Einstein condensates via the
Kibble-Zurek mechanism. We measure the power-law dependence of defects number
with the quench time, and provide a check of the Kibble-Zurek scaling with the
sonic horizon. These results provide a promising test bed for the determination
of critical exponents in Bose-Einstein condensates.Comment: 7 pages, 4 figure
The boundary Riemann solver coming from the real vanishing viscosity approximation
We study a family of initial boundary value problems associated to mixed
hyperbolic-parabolic systems:
v^{\epsilon} _t + A (v^{\epsilon}, \epsilon v^{\epsilon}_x ) v^{\epsilon}_x =
\epsilon B (v^{\epsilon} ) v^{\epsilon}_{xx}
The conservative case is, in particular, included in the previous
formulation.
We suppose that the solutions to these problems converge to a
unique limit. Also, it is assumed smallness of the total variation and other
technical hypotheses and it is provided a complete characterization of the
limit.
The most interesting points are the following two.
First, the boundary characteristic case is considered, i.e. one eigenvalue of
can be .
Second, we take into account the possibility that is not invertible. To
deal with this case, we take as hypotheses conditions that were introduced by
Kawashima and Shizuta relying on physically meaningful examples. We also
introduce a new condition of block linear degeneracy. We prove that, if it is
not satisfied, then pathological behaviours may occur.Comment: 84 pages, 6 figures. Text changes in Sections 1 and 3.2.3. Added
Section 3.1.2. Minor changes in other section
suPAR as a prognostic biomarker in sepsis
Sepsis is the clinical syndrome derived from the host response to an infection and severe sepsis is the leading cause of death in critically ill patients. Several biomarkers have been tested for use in diagnosis and prognostication in patients with sepsis. Soluble urokinase-type plasminogen activator receptor (suPAR) levels are increased in various infectious diseases, in the blood and also in other tissues. However, the diagnostic value of suPAR in sepsis has not been well defined, especially compared to other more established biomarkers, such as C-reactive protein (CRP) and procalcitonin (PCT). On the other hand, suPAR levels have been shown to predict outcome in various kinds of bacteremia and recent data suggest they may have predictive value, similar to that of severity scores, in critically ill patients. This narrative review provides a descriptive overview of the clinical value of this biomarker in the diagnosis, prognosis and therapeutic guidance of sepsis
Adjunctive immunotherapeutic agents in patients with sepsis and septic shock: a multidisciplinary consensus of 23
Background: In the last decades, several adjunctive treatments have been proposed to reduce mortality in septic shock patients. Unfortunately, mortality due to sepsis and septic shock remains elevated and NO trials evaluating adjunctive therapies were able to demonstrate any clear benefit. In light of the lack of evidence and conflicting results from previous studies, in this multidisciplinary consensus, the authors considered the rational, recent investigations and potential clinical benefits of targeted adjunctive therapies. Methods: A panel of multidisciplinary experts defined clinical phenotypes, treatments and outcomes of greater interest in the field of adjunctive therapies for sepsis and septic shock. After an extensive systematic literature review, the appropriateness of each treatment for each clinical phenotype was determined using the modified RAND/UCLA appropriateness method. Results: The consensus identified two distinct clinical phenotypes: patients with overwhelming shock and patients with immune paralysis. Six different adjunctive treatments were considered the most frequently used and promising: (i) corticosteroids, (ii) blood purification, (iii) immunoglobulins, (iv) granulocyte/monocyte colony-stimulating factor and (v) specific immune therapy (i.e. interferon-gamma, IL7 and AntiPD1). Agreement was achieved in 70% of the 25 clinical questions. Conclusions: Although clinical evidence is lacking, adjunctive therapies are often employed in the treatment of sepsis. To address this gap in knowledge, a panel of national experts has provided a structured consensus on the appropriate use of these treatments in clinical practice
Fatal cytokine release syndrome by an aberrant FLIP/STAT3 axis
Inflammatory responses rapidly detect pathogen invasion and mount a regulated reaction. However, dysregulated anti-pathogen immune responses can provoke life-threatening inflammatory pathologies collectively known as cytokine release syndrome (CRS), exemplified by key clinical phenotypes unearthed during the SARS-CoV-2 pandemic. The underlying pathophysiology of CRS remains elusive. We found that FLIP, a protein that controls caspase-8 death pathways, was highly expressed in myeloid cells of COVID-19 lungs. FLIP controlled CRS by fueling a STAT3-dependent inflammatory program. Indeed, constitutive expression of a viral FLIP homolog in myeloid cells triggered a STAT3-linked, progressive, and fatal inflammatory syndrome in mice, characterized by elevated cytokine output, lymphopenia, lung injury, and multiple organ dysfunctions that mimicked human CRS. As STAT3-targeting approaches relieved inflammation, immune disorders, and organ failures in these mice, targeted intervention towards this pathway could suppress the lethal CRS inflammatory state
- …