567 research outputs found

    Localization Properties in One Dimensional Disordered Supersymmetric Quantum Mechanics

    Full text link
    A model of localization based on the Witten Hamiltonian of supersymmetric quantum mechanics is considered. The case where the superpotential ϕ(x)\phi(x) is a random telegraph process is solved exactly. Both the localization length and the density of states are obtained analytically. A detailed study of the low energy behaviour is presented. Analytical and numerical results are presented in the case where the intervals over which ϕ(x)\phi(x) is kept constant are distributed according to a broad distribution. Various applications of this model are considered.Comment: 43 pages, plain TEX, 8 figures not included, available upon request from the Authors

    Hall Conductivity for Two Dimensional Magnetic Systems

    Full text link
    A Kubo inspired formalism is proposed to compute the longitudinal and transverse dynamical conductivities of an electron in a plane (or a gas of electrons at zero temperature) coupled to the potential vector of an external local magnetic field, with the additional coupling of the spin degree of freedom of the electron to the local magnetic field (Pauli Hamiltonian). As an example, the homogeneous magnetic field Hall conductivity is rederived. The case of the vortex at the origin is worked out in detail. This system happens to display a transverse Hall conductivity (PP breaking effect) which is subleading in volume compared to the homogeneous field case, but diverging at small frequency like 1/ω21/\omega^2. A perturbative analysis is proposed for the conductivity in the random magnetic impurity problem (Poissonian vortices in the plane). At first order in perturbation theory, the Hall conductivity displays oscillations close to the classical straight line conductivity of the mean magnetic field.Comment: 28 pages, latex, 2 figure

    The Local Time Distribution of a Particle Diffusing on a Graph

    Full text link
    We study the local time distribution of a Brownian particle diffusing along the links on a graph. In particular, we derive an analytic expression of its Laplace transform in terms of the Green's function on the graph. We show that the asymptotic behavior of this distribution has non-Gaussian tails characterized by a nontrivial large deviation function.Comment: 8 pages, two figures (included

    On the spectrum of the Laplace operator of metric graphs attached at a vertex -- Spectral determinant approach

    Full text link
    We consider a metric graph G\mathcal{G} made of two graphs G1\mathcal{G}_1 and G2\mathcal{G}_2 attached at one point. We derive a formula relating the spectral determinant of the Laplace operator SG(γ)=det(γΔ)S_\mathcal{G}(\gamma)=\det(\gamma-\Delta) in terms of the spectral determinants of the two subgraphs. The result is generalized to describe the attachment of nn graphs. The formulae are also valid for the spectral determinant of the Schr\"odinger operator det(γΔ+V(x))\det(\gamma-\Delta+V(x)).Comment: LaTeX, 8 pages, 7 eps figures, v2: new appendix, v3: discussions and ref adde

    Brownian Motion in wedges, last passage time and the second arc-sine law

    Full text link
    We consider a planar Brownian motion starting from OO at time t=0t=0 and stopped at t=1t=1 and a set F={OIi;i=1,2,...,n}F= \{OI_i ; i=1,2,..., n\} of nn semi-infinite straight lines emanating from OO. Denoting by gg the last time when FF is reached by the Brownian motion, we compute the probability law of gg. In particular, we show that, for a symmetric FF and even nn values, this law can be expressed as a sum of arcsin\arcsin or (arcsin)2(\arcsin)^2 functions. The original result of Levy is recovered as the special case n=2n=2. A relation with the problem of reaction-diffusion of a set of three particles in one dimension is discussed

    Scars on quantum networks ignore the Lyapunov exponent

    Full text link
    We show that enhanced wavefunction localization due to the presence of short unstable orbits and strong scarring can rely on completely different mechanisms. Specifically we find that in quantum networks the shortest and most stable orbits do not support visible scars, although they are responsible for enhanced localization in the majority of the eigenstates. Scarring orbits are selected by a criterion which does not involve the classical Lyapunov exponent. We obtain predictions for the energies of visible scars and the distributions of scarring strengths and inverse participation ratios.Comment: 5 pages, 2 figure

    Exit and Occupation times for Brownian Motion on Graphs with General Drift and Diffusion Constant

    Full text link
    We consider a particle diffusing along the links of a general graph possessing some absorbing vertices. The particle, with a spatially-dependent diffusion constant D(x) is subjected to a drift U(x) that is defined in every point of each link. We establish the boundary conditions to be used at the vertices and we derive general expressions for the average time spent on a part of the graph before absorption and, also, for the Laplace transform of the joint law of the occupation times. Exit times distributions and splitting probabilities are also studied and several examples are discussed.Comment: Accepted for publication in J. Phys.

    Spectral determinants and zeta functions of Schr\"odinger operators on metric graphs

    Full text link
    A derivation of the spectral determinant of the Schr\"odinger operator on a metric graph is presented where the local matching conditions at the vertices are of the general form classified according to the scheme of Kostrykin and Schrader. To formulate the spectral determinant we first derive the spectral zeta function of the Schr\"odinger operator using an appropriate secular equation. The result obtained for the spectral determinant is along the lines of the recent conjecture.Comment: 16 pages, 2 figure

    Area distribution of two-dimensional random walks on a square lattice

    Full text link
    The algebraic area probability distribution of closed planar random walks of length N on a square lattice is considered. The generating function for the distribution satisfies a recurrence relation in which the combinatorics is encoded. A particular case generalizes the q-binomial theorem to the case of three addends. The distribution fits the L\'evy probability distribution for Brownian curves with its first-order 1/N correction quite well, even for N rather small.Comment: 8 pages, LaTeX 2e. Reformulated in terms of q-commutator

    Distribution of the area enclosed by a 2D random walk in a disordered medium

    Full text link
    The asymptotic probability distribution for a Brownian particle wandering in a 2D plane with random traps to enclose the algebraic area A by time t is calculated using the instanton technique.Comment: 4 pages, ReVTeX. Phys. Rev. E (March 1999), to be publishe
    corecore