129 research outputs found

    Molecular and all solid DFT studies of the magnetic and chemical bonding properties within KM[Cr(CN)6_6] (M = V, Ni) complexes

    Full text link
    A study at both the molecular and extended solid level in the framework DFT is carried out for KM[Cr(CN)6_6] (M = V, Ni). From molecular calculations, the exchange parameters J are obtained, pointing to the expected magnetic ground states, i.e., antiferromagnetic for M = V with J = -296.5 cm1^{-1} and ferromagnetic for M = Ni with J = +40.5 cm1^{-1}. From solid state computations the same ground states and J magnitudes are confirmed from energy differences. Furthermore an analysis of the site projected density of states and of the chemical bonding is developed in which the cyanide ion linkage is analyzed addressing some isomerism aspects.Comment: new results, 5 tables, 7 fig

    Neutron Scattering Study of Spin Density Wave Order in the Superconducting State of Excess-Oxygen-Doped La2CuO4+y

    Full text link
    We report neutron scattering measurements of spin density wave order within the superconducting state of a single crystal of predominately stage-4 La2CuO4+y with a Tc(onset) of 42 K. The low temperature elastic magnetic scattering is incommensurate with the lattice and is characterized by long-range order in the copper-oxide plane with the spin direction identical to that in the insulator. Between neighboring planes, the spins exhibit short-range correlations with a stacking arrangement reminiscent of that in the undoped antiferromagnetic insulator. The elastic magnetic peak intensity appears at the same temperature within the errors as the superconductivity, suggesting that the two phenomena are strongly correlated. These observations directly reveal the persistent influence of the antiferromagnetic order as the doping level increases from the insulator to the superconductor. In addition, our results confirm that spin density wave order for incommensurabilities near 1/8 is a robust feature of the La2CuO4-based superconductors.Comment: 14 pages, LaTeX, includes 8 figure

    Open peer-to-peer systems over blockchain and ipfs: An agent oriented framework

    Get PDF
    In recent years, the increasing concerns around the centralized cloud web services (e.g. privacy, governance, surveillance, security) have triggered the emergence of new distributed technologies, such as IPFS or the Blockchain. These innovations have tackled technical challenges that were unresolved until their appearance. Existing models of peer-to-peer systems need a revision to cover the spectrum of potential systems that can be now implemented as peer-to-peer systems. This work presents a framework to build these systems. It uses an agent-oriented approach in an open environment where agents have only partial information of the system data. The proposal covers data access, data discovery and data trust in peer-to-peer systems where different actors may interact. Moreover, the framework proposes a distributed architecture for these open systems, and provides guidelines to decide in which cases Blockchain technology may be required, or when other technologies may be sufficient

    Charge disproportionation in YNiO3_{3} : ESR and susceptibility study

    Full text link
    We present a study of the magnetic properties of YNiO3_{3} in the paramagnetic range, above and below the metal-insulator (MI) transition. The dc susceptibility, χdc\chi_{dc} (measured up to 1000 K) is a decreasing function of T for T>T >150 K (the N\'{e}el temperature) and we observe two different Curie-Weiss regimes corresponding to the metallic and insulator phases. In the metallic phase, this behaviour seems to be associated with the small ionic radius of Y% 3+^{3+}. The value of the Curie constant for T<< TMI_{MI} allows us to discard the possibility of Ni3+^{3+} localization. An electron spin resonance (ESR) spectrum is visible in the insulator phase and only a fraction of the Ni ions contributes to this resonance. We explain the ESR and χdc\chi _{dc} behaviour for T << TMI_{MI} in terms of charge disproportionation of the type 2Ni% ^{3+}\to Ni2+^{2+}+Ni4+,^{4+}, that is compatible with the previously observed structural transition across TMI_{MI}.Comment: 10 pages, 4 figures, submitted to Phys. Rev.

    Li1.5La1.5MO6 (M = W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries

    Get PDF
    Solid-state batteries are a proposed route to safely achieving high energy densities, yet this architecture faces challenges arising from interfacial issues between the electrode and solid electrolyte. Here we develop a novel family of double perovskites, Li1.5La1.5MO6 (M = W6+, Te6+), where an uncommon lithium-ion distribution enables macroscopic ion diffusion and tailored design of the composition allows us to switch functionality to either a negative electrode or a solid electrolyte. Introduction of tungsten allows reversible lithium-ion intercalation below 1 V, enabling application as an anode (initial specific capacity >200 mAh g-1 with remarkably low volume change of ∼0.2%). By contrast, substitution of tungsten with tellurium induces redox stability, directing the functionality of the perovskite towards a solid-state electrolyte with electrochemical stability up to 5 V and a low activation energy barrier (<0.2 eV) for microscopic lithium-ion diffusion. Characterisation across multiple length- and time-scales allows interrogation of the structure-property relationships in these materials and preliminary examination of a solid-state cell employing both compositions suggests lattice-matching avenues show promise for all-solid-state batteries
    corecore