1,416 research outputs found
Quantum gate for Q switching in monolithic photonic bandgap cavities containing two-level atoms
Photonic bandgap cavities are prime solid-state systems to investigate
light-matter interactions in the strong coupling regime. However, as the cavity
is defined by the geometry of the periodic dielectric pattern, cavity control
in a monolithic structure can be problematic. Thus, either the state coherence
is limited by the read-out channel, or in a high Q cavity, it is nearly
decoupled from the external world, making measurement of the state extremely
challenging. We present here a method for ameliorating these difficulties by
using a coupled cavity arrangement, where one cavity acts as a switch for the
other cavity, tuned by control of the atomic transition.Comment: 6 pages, 5 figures, 1 tabl
A preliminary report of multispectral scanner data from the Cleveland harbor study
Imagery obtained from an airborne multispectral scanner is presented. A synoptic view of the entire study area is shown for a number of time periods and for a number of spectral bands. Using several bands, sediment distributions, thermal plumes, and Rhodamine B dye distributions are shown
A Policy Maker’s Guide to Designing Payments for Ecosystem Services
Over the past five years, there has been increasing interest around the globe in payment schemes for the provision of ecosystem services, such as water purification, carbon sequestration, flood control, etc. Written for an Asian Development Bank project in China, this report provides a user-friendly guide to designing payments for the provision of ecosystem services. Part I explains the different types of ecosystem services, different ways of assessing their value, and why they are traditionally under-protected by law and policy. This is followed by an analysis of when payments for services are a preferable approach to other policy instruments. Part II explains the design issues underlying payments for services. These include identification of the service as well as potential buyers and sellers, the level of service needed, payment timing, payment type, and risk allocation. Part II contains a detailed analysis of the different types of payment mechanisms, ranging from general subsidy and certification to mitigation and offset payments. Part III explores the challenges to designing a payment scheme. These include the ability to monitor service provision, secure property rights, perverse incentives, supporting institutions, and poverty alleviation
Remote sensing study of Maumee River effects of Lake Erie
The effects of river inputs on boundary waters were studied in partial support of the task to assess the significance of river inputs into receiving waters, dispersion of pollutants, and water quality. The effects of the spring runoff of the Maumee River on Lake Erie were assessed by a combination of ship survey and remote sensing techniques. The imagery obtained from a multispectral scanner of the west basin of Lake Erie is discussed: this clearly showed the distribution of particulates throughout the covered area. This synoptic view, in addition to its qualitative value, is very useful in selecting sampling stations for shipboard in situ measurements, and for extrapolating these quantitative results throughout the area of interest
Coordinated aircraft and ship surveys for determining impact of river inputs on great lakes waters. Remote sensing results
The remote sensing results of aircraft and ship surveys for determining the impact of river effluents on Great Lakes waters are presented. Aircraft multi-spectral scanner data were acquired throughout the spring and early summer of 1976 at five locations: the West Basin of Lake Erie, Genesee River - Lake Ontario, Menomonee River - Lake Michigan, Grand River - Lake Michigan, and Nemadji River - Lake Superior. Multispectral scanner data and ship surface sample data are correlated resulting in 40 contour plots showing large-scale distributions of parameters such as total suspended solids, turbidity, Secchi depth, nutrients, salts, and dissolved oxygen. The imagery and data analysis are used to determine the transport and dispersion of materials from the river discharges, especially during spring runoff events, and to evaluate the relative effects of river input, resuspension, and shore erosion. Twenty-five LANDSAT satellite images of the study sites are also included in the analysis. Examples of the use of remote sensing data in quantitatively estimating total particulate loading in determining water types, in assessing transport across international boundaries, and in supporting numerical current modeling are included. The importance of coordination of aircraft and ship lake surveys is discussed, including the use of telefacsimile for the transmission of imagery
Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure
Inflation plays a central role in our current understanding of the universe.
According to the standard viewpoint, the homogeneous and isotropic mode of the
inflaton field drove an early phase of nearly exponential expansion of the
universe, while the quantum fluctuations (uncertainties) of the other modes
gave rise to the seeds of cosmic structure. However, if we accept that the
accelerated expansion led the universe into an essentially homogeneous and
isotropic space-time, with the state of all the matter fields in their vacuum
(except for the zero mode of the inflaton field), we can not escape the
conclusion that the state of the universe as a whole would remain always
homogeneous and isotropic. It was recently proposed in [A. Perez, H. Sahlmann
and D. Sudarsky, "On the quantum origin of the seeds of cosmic structure,"
Class. Quant. Grav. 23, 2317-2354 (2006)] that a collapse (representing physics
beyond the established paradigm, and presumably associated with a
quantum-gravity effect a la Penrose) of the state function of the inflaton
field might be the missing element, and thus would be responsible for the
emergence of the primordial inhomogeneities. Here we will discuss a formalism
that relies strongly on quantum field theory on curved space-times, and within
which we can implement a detailed description of such a process. The picture
that emerges clarifies many aspects of the problem, and is conceptually quite
transparent. Nonetheless, we will find that the results lead us to argue that
the resulting picture is not fully compatible with a purely geometric
description of space-time.Comment: 53 pages, no figures. Revision to match the published versio
Low-dimensional dynamics for working memory and time encoding
Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear “ramping” component of each neuron’s firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data
Probing the physiology of ASH neuron in Caenorhabditis elegans using electric current stimulation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98694/1/ApplPhysLett_99_053702.pd
How Big Can Anomalous W Couplings Be?
Conventional wisdom has it that anomalous gauge-boson self-couplings can be
at most a percent or so in size. We test this wisdom by computing these
couplings at one loop in a generic renormalizable model of new physics. (For
technical reasons we consider the CP-violating couplings here, but our results
apply more generally.) By surveying the parameter space we find that the
largest couplings (several percent) are obtained when the new particles are at
the weak scale. For heavy new physics we compare our findings with expectations
based on an effective-lagrangian analysis. We find general patterns of induced
couplings which robustly reflect the nature of the underlying physics. We build
representative models for which the new physics could be first detected in the
anomalous gauge couplings.Comment: 40 pages, 11 figures, (dvi file and figures combined into a uuencoded
compressed file), (We correct an error in eq. 39 and its associated figure
(9). No changes at all to the text.), McGill-93/40, UQAM-PHE-93/03,
NEIPH-93-00
- …