4,649 research outputs found

    Association between activities related to routes of infection and clinical manifestations of melioidosis.

    Get PDF
    We sought associations between route of infection by Burkholderia pseudomallei and clinical manifestations in 330 cases of melioidosis in northeast Thailand using bivariate multivariable logistic regression models. Activities related to skin inoculation were negatively associated with bacteraemia, activities related to ingestion were associated with bacteraemia, and activities related to inhalation were associated with pneumonia. Our study suggests that route of infection is one of the factors related to clinical manifestations of melioidosis

    Simulated Extragalactic Observations with a Cryogenic Imaging Spectrophotometer

    Get PDF
    In this paper we explore the application of cryogenic imaging spectrophotometers. Prototypes of this new class of detector, such as superconducting tunnel junctions (STJs) and transition edge sensors (TESs), currently deliver low resolution imaging spectrophotometry with high quantum efficiency (70-100%) and no read noise over a wide bandpass in the visible to near-infrared. In order to demonstrate their utility and the differences in observing strategy needed to maximize their scientific return, we present simulated observations of a deep extragalactic field. Using a simple analytic technique, we can estimate both the galaxy redshift and spectral type more accurately than is possible with current broadband techniques. From our simulated observations and a subsequent discussion of the expected migration path for this new technology, we illustrate the power and promise of these devices.Comment: 30 pages, 10 figures, accepted for publication in the Astronomical Journa

    Clustering Analyses of 300,000 Photometrically Classified Quasars--I. Luminosity and Redshift Evolution in Quasar Bias

    Full text link
    Using ~300,000 photometrically classified quasars, by far the largest quasar sample ever used for such analyses, we study the redshift and luminosity evolution of quasar clustering on scales of ~50 kpc/h to ~20 Mpc/h from redshifts of z~0.75 to z~2.28. We parameterize our clustering amplitudes using realistic dark matter models, and find that a LCDM power spectrum provides a superb fit to our data with a redshift-averaged quasar bias of b_Q = 2.41+/-0.08 (P<χ2=0.847P_{<\chi^2}=0.847) for σ8=0.9\sigma_8=0.9. This represents a better fit than the best-fit power-law model (ω=0.0493±0.0064θ0.928±0.055\omega = 0.0493\pm0.0064\theta^ {-0.928\pm0.055}; P<χ2=0.482P_{<\chi^2}=0.482). We find b_Q increases with redshift. This evolution is significant at >99.6% using our data set alone, increasing to >99.9999% if stellar contamination is not explicitly parameterized. We measure the quasar classification efficiency across our full sample as a = 95.6 +/- ^{4.4}_{1.9}%, a star-quasar separation comparable with the star-galaxy separation in many photometric studies of galaxy clustering. We derive the mean mass of the dark matter halos hosting quasars as MDMH=(5.2+/-0.6)x10^{12} M_solar/h. At z~1.9 we find a 1.5σ1.5\sigma deviation from luminosity-independent quasar clustering; this suggests that increasing our sample size by a factor of 1.8 could begin to constrain any luminosity dependence in quasar bias at z~2. Our results agree with recent studies of quasar environments at z < 0.4, which detected little luminosity dependence to quasar clustering on proper scales >50 kpc/h. At z < 1.6, our analysis suggests that b_Q is constant with luminosity to within ~0.6, and that, for g < 21, angular quasar autocorrelation measurements are unlikely to have sufficient statistical power at z < 1.6 to detect any luminosity dependence in quasars' clustering.Comment: 13 pages, 9 figures, 2 tables; uses amulateapj; accepted to Ap

    Constraints on Omega_m and sigma_8 from weak lensing in RCS fields

    Full text link
    We have analysed 53 square degrees of imaging data from the Red-Sequence Cluster Survey (RCS), and measured the excess correlations in the shapes of galaxies on scales out to ~1.5 degrees. We separate the signal into an ``E''- (lensing) and ``B''-mode (systematics), which allows us to study residual systematics. On scales larger than 10 arcminutes, we find no ``B''-mode. On smaller scales we find a small, but significant ``B''-mode. This signal is also present when we select a sample of bright galaxies. These galaxies are rather insensitive to observational distortions, and we therefore conclude that the oberved ``B''-mode is likely to be caused by intrinsic alignments. We therefore limit the cosmic shear analysis to galaxies with 22<R_C<24. We derive joint constraints on Omega_m and sigma_8, by marginalizing over Gamma, Omega_Lambda and the source redshift distribution, using different priors. We obtain a conservative constraint of σ8=0.450.12+0.09Ωm0.55\sigma_8=0.45^{+0.09}_{-0.12} \Omega_m^{-0.55} (95% confidence). A better constraint is derived when we use Gaussian priors redshift distribution. For this choice of priors, we find σ8=(0.460.07+0.05)Ωm0.52\sigma_8=(0.46^{+0.05}_{-0.07})\Omega_m^{-0.52} (95% confidence). Using our setof Gaussian priors, we find that we can place a lower bound on Gamma: Gamma>0.1+0.16\Omega_m$ (95% confidence). Comparison of the RCS results with three other recent cosmic shear measurements shows excellent agreement. The current weak lensing results are also in good agreement with CMB measurements, when we allow the reionization optical depth tau and the spectral index n_s to vary. We present a simple demonstration of how the weak lensing results can be used as a prior in the parameter estimation from CMB measurements to derive constraints on the reionization optical depth tau. (abridged)Comment: 9 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    Puromycin Sensitivity of Ribosomal Label after Incorporation of 14C-Labelled Amino Acids into Isolated Mitochondria from Neurospora crassa

    Get PDF
    Radioactive amino acids were incorporated into isolated mitochondria from Neurospora crassa. Then the mitochondrial ribosomes were isolated and submitted to density gradient centrifugation. A preferential labelling of polysomes was observed. However, when the mitochondrial suspension was treated with puromycin after amino acid incorporation, no radioactivity could be detected in either the monosomes or the polysomes. The conclusion is drawn that isolated mitochondria under these conditions do not incorporate significant amounts of amino acids into proteins of their ribosomes

    Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models

    Get PDF
    We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parameterize the cosmic expansion by the two parameters, w0w_0 and waw_a, and the linear growth rate of density fluctuations by Linder's γ\gamma, independently. Dark energy models generically predict γ0.55\gamma \approx 0.55, while the DGP model γ0.68\gamma \approx 0.68. To determine if future imaging surveys can constrain γ\gamma within 20 percent (or Δγ<0.1\Delta\gamma<0.1), we perform the Fisher matrix analysis for a weak lensing survey such as the on-going Hyper Suprime-Cam (HSC) project. Under the condition that the total observation time is fixed, we compute the Figure of Merit (FoM) as a function of the exposure time \texp. We find that the tomography technique effectively improves the FoM, which has a broad peak around \texp\simeq {\rm several}\sim 10 minutes; a shallow and wide survey is preferred to constrain the γ\gamma parameter. While Δγ<0.1\Delta\gamma < 0.1 cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining with a follow-up spectroscopic survey like WFMOS and/or future CMB observations.Comment: 18 pages, typos correcte

    Cosmological Constraints on a Dynamical Electron Mass

    Full text link
    Motivated by recent astrophysical observations of quasar absorption systems, we formulate a simple theory where the electron to proton mass ratio μ=me/mp\mu =m_{e}/m_{p} is allowed to vary in space-time. In such a minimal theory only the electron mass varies, with α\alpha and mpm_{p} kept constant. We find that changes in μ\mu will be driven by the electronic energy density after the electron mass threshold is crossed. Particle production in this scenario is negligible. The cosmological constraints imposed by recent astronomical observations are very weak, due to the low mass density in electrons. Unlike in similar theories for spacetime variation of the fine structure constant, the observational constraints on variations in μ\mu imposed by the weak equivalence principle are much more stringent constraints than those from quasar spectra. Any time-variation in the electron-proton mass ratio must be less than one part in 10910^{9}since redshifts z1.z\approx 1.This is more than one thousand times smaller than current spectroscopic sensitivities can achieve. Astronomically observable variations in the electron-proton must therefore arise directly from effects induced by varying fine structure 'constant' or by processes associated with internal proton structure. We also place a new upper bound of 2×1082\times 10^{-8} on any large-scale spatial variation of μ\mu that is compatible with the isotropy of the microwave background radiation.Comment: New bounds from weak equivalence principle experiments added, conclusions modifie

    Patient reactions to a web-based cardiovascular risk calculator in type 2 diabetes: a qualitative study in primary care.

    Get PDF
    Use of risk calculators for specific diseases is increasing, with an underlying assumption that they promote risk reduction as users become better informed and motivated to take preventive action. Empirical data to support this are, however, sparse and contradictory

    The Power Spectrum of Clusters of Galaxies and the Press-Schechter Approximation

    Get PDF
    We examine the power spectrum of clusters in the Press-Schechter (PS) theory and in N-body simulations to see how the power spectrum of clusters is related to the power spectrum of matter density fluctuations in the Universe. An analytic model for the power spectrum of clusters for their given number density is presented, both for real space and redshift space. We test this model against results from N-body simulations and find that the agreement between the analytic theory and the numerical results is good for wavelengths λ>60h1\lambda >60h^{-1} Mpc. On smaller scales non-linear processes that are not considered in the linear PS approximation influence the result. We also use our analytic model to study the redshift-space power spectrum of clusters in cold dark matter models with a cosmological constant (Λ\LambdaCDM) and with a scale-invariant Harrison-Zel'dovich initial spectrum of density fluctuations. We find that power spectra of clusters in these models are not consistent with the observed power spectra of the APM and Abell-ACO clusters. One possible explanation for the observed power spectra of clusters is an inflationary scenario with a scalar field with the potential that has a localized steplike feature. We use the PS theory to examine the power spectrum of clusters in this model.Comment: 16 pages, 5 figures. Accepted by Ap
    corecore