2,443 research outputs found
Underlying symmetries of realistic interactions and the nuclear many-body problem
The present study brings forward important information, within the framework
of spectral distribution theory, about the types of forces that dominate three
realistic interactions, CD-Bonn, CDBonn+ 3terms and GXPF1, in nuclei and their
ability to account for many-particle effects such as the formation of
correlated nucleon pairs and enhanced quadrupole collective modes.
Like-particle and proton-neutron isovector pairing correlations are described
microscopically by a model interaction with Sp(4) dynamical symmetry, which is
extended to include an additional quadrupole-quadrupole interaction. The
analysis of the results for the 1f7/2 level shows that both CD-Bonn+3terms and
GXPF1 exhibit a well-developed pairing character compared to CD-Bonn, while the
latter appears to build up more (less) rotational isovector T = 1 (isoscalar T
= 0) collective features. Furthermore, the three realistic interactions are in
general found to correlate strongly with the pairing+quadrupole model
interaction, especially for the highest possible isospin group of states where
the model interaction can be used to provide a reasonable description of the
corresponding energy spectra.Comment: 12 pages, 4 figure
Experimental evidence of a natural parity state in Mg and its impact to the production of neutrons for the s process
We have studied natural parity states in Mg via the
Ne(Li,d)Mg reaction. Our method significantly improves the
energy resolution of previous experiments and, as a result, we report the
observation of a natural parity state in Mg. Possible spin-parity
assignments are suggested on the basis of published -ray decay
experiments. The stellar rate of the Ne(,)Mg
reaction is reduced and may give rise to an increase in the production of
s-process neutrons via the Ne(,n)Mg reaction.Comment: Published in PR
Assessing sexual interest in children using the Go/No-Go Association Test
The present study investigated whether a latency-based Go/No-Go Association Task (GNAT) could be used as an indirect measure of sexual interest in children. A sample 29 individuals with a history of exclusive extrafamilial offenses against a child and 15 individuals with either a history of exclusive intrafamilial or mixed offenses (i.e., against both adults and children) were recruited from a treatment center in the US. Also, a sample of 26 nonoffenders was recruited from a university in the UK. All participants completed the Sexual Fantasy-GNAT, a Control-GNAT, and two self-report measures of sexual fantasy. It was hypothesized that, relative to the two comparison groups, the extrafamilial group would respond faster on the block that paired 'sexual fantasy' and 'children'. Also, GNAT scores were expected to correlate with child-related sexual fantasies. Support was found for both hypotheses. Response-latency indices were also found to effectively distinguish the extrafamilial group, as well as those who self-reported using child-related sexual fantasies. The implications of these findings, along with the study's limitations and suggestions for future research, are discussed
Precision Measurement of the 29Si, 33S, and 36Cl Binding Energies
The binding energies of 29Si, 33S, and 36Cl have been measured with a
relative uncertainty using a flat-crystal spectrometer.
The unique features of these measurements are 1) nearly perfect crystals whose
lattice spacing is known in meters, 2) a highly precise angle scale that is
derived from first principles, and 3) a gamma-ray measurement facility that is
coupled to a high flux reactor with near-core source capability. The binding
energy is obtained by measuring all gamma-rays in a cascade scheme connecting
the capture and ground states. The measurements require the extension of
precision flat-crystal diffraction techniques to the 5 to 6 MeV energy region,
a significant precision measurement challenge. The binding energies determined
from these gamma-ray measurements are consistent with recent highly accurate
atomic mass measurements within a relative uncertainty of .
The gamma-ray measurement uncertainties are the dominant contributors to the
uncertainty of this consistency test. The measured gamma-ray energies are in
agreement with earlier precision gamma-ray measurements.Comment: 13 pages, 4 figure
Coherent control of the cooperative branching ratio for nuclear x-ray pumping
Coherent control of nuclear pumping in a three level system driven by x-ray
light is investigated. In single nuclei, the pumping performance is determined
by the branching ratio of the excited state populated by the x-ray pulse. Our
results are based on the observation that in ensembles of nuclei, cooperative
excitation and decay leads to a greatly modified nuclear dynamics, which we
characterize by a time-dependent cooperative branching ratio. We discuss
prospects of steering the x-ray pumping by coherently controlling the
cooperative decay. First, we study an ideal case with purely superradiant decay
and perfect control of the cooperative emission. A numerical analysis of x-ray
pumping in nuclear forward scattering with coherent control of the cooperative
decay via externally applied magnetic fields is presented. Next, we provide an
extended survey of nuclei suitable for our scheme, and propose
proof-of-principle implementations already possible with typical M\"ossbauer
nuclear systems such as . Finally, we discuss the application
of such control techniques to the population or depletion of long-lived nuclear
states.Comment: 11 pages, 8 figures; updated to the published versio
New determinations of gamma-ray line intensities of the Ep = 550 keV and Ep = 1747 keV resonances of the 13-C(p,gamma)14-N reaction
Gamma-ray angular distributions for the resonances at Ep = 550 keV and 1747
keV of the radiative capture reaction 13-C(p,g)14-N have been measured, using
intense proton beams on isotopically pure 13-C targets. Relative intensities
for the strongest transitions were extracted with an accuracy of typically five
per cent, making these resonances new useful gamma-ray standards for efficiency
calibration in the energy range Egamma = 1.6 to 9 MeV.Comment: 17 pages, 6 figures, Nuclear Instruments and Methods, Sec. A,
accepte
The event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei
The computer code DECAY4 is developed to generate initial energy, time and
angular distributions of particles emitted in radioactive decays of nuclides
and nuclear (atomic) deexcitations. Data for description of nuclear and atomic
decay schemes are taken from the ENSDF and EADL database libraries. The
examples of use of the DECAY4 code in several underground experiments are
described.Comment: 8 pages, 1 fi
SeaWiFS technical report series. Volume 13: Case studies for SeaWiFS calibration and validation, part 1
Although the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Calibration and Validation Program relies on the scientific community for the collection of bio-optical and atmospheric correction data as well as for algorithm development, it does have the responsibility for evaluating and comparing the algorithms and for ensuring that the algorithms are properly implemented within the SeaWiFS Data Processing System. This report consists of a series of sensitivity and algorithm (bio-optical, atmospheric correction, and quality control) studies based on Coastal Zone Color Scanner (CZCS) and historical ancillary data undertaken to assist in the development of SeaWiFS specific applications needed for the proper execution of that responsibility. The topics presented are as follows: (1) CZCS bio-optical algorithm comparison, (2) SeaWiFS ozone data analysis study, (3) SeaWiFS pressure and oxygen absorption study, (4) pixel-by-pixel pressure and ozone correction study for ocean color imagery, (5) CZCS overlapping scenes study, (6) a comparison of CZCS and in situ pigment concentrations in the Southern Ocean, (7) the generation of ancillary data climatologies, (8) CZCS sensor ringing mask comparison, and (9) sun glint flag sensitivity study
High-Precision Measurement of the 19Ne Half-Life and Implications for Right-Handed Weak Currents
We report a precise determination of the 19Ne half-life to be s. This result disagrees with the most recent precision
measurements and is important for placing bounds on predicted right-handed
interactions that are absent in the current Standard Model. We are able to
identify and disentangle two competing systematic effects that influence the
accuracy of such measurements. Our findings prompt a reassessment of results
from previous high-precision lifetime measurements that used similar equipment
and methods.Comment: 5 pages and 5 figures. Paper accepted for publication in Phys. Rev.
Let
- …