2,594 research outputs found

    Penrose Limits, the Colliding Plane Wave Problem and the Classical String Backgrounds

    Full text link
    We show how the Szekeres form of the line element is naturally adapted to study Penrose limits in classical string backgrounds. Relating the "old" colliding wave problem to the Penrose limiting procedure as employed in string theory we discuss how two orthogonal Penrose limits uniquely determine the underlying target space when certain symmetry is imposed. We construct a conformally deformed background with two distinct, yet exactly solvable in terms of the string theory on R-R backgrounds, Penrose limits. Exploiting further the similarities between the two problems we find that the Penrose limit of the gauged WZW Nappi-Witten universe is itself a gauged WZW plane wave solution of Sfetsos and Tseytlin. Finally, we discuss some issues related to singularity, show the existence of a large class of non-Hausdorff solutions with Killing Cauchy Horizons and indicate a possible resolution of the problem of the definition of quantum vacuum in string theory on these time-dependent backgrounds.Comment: Some misprints corrected. Matches the version in print. To appear in Classical & Quantum Gravit

    Avalanches and the Distribution of Reconnection Events in Magnetized Circumstellar Disks

    Full text link
    Cosmic rays produced by young stellar objects can potentially alter the ionization structure, heating budget, chemical composition, and accretion activity in circumstellar disks. The inner edges of these disks are truncated by strong magnetic fields, which can reconnect and produce flaring activity that accelerates cosmic radiation. The resulting cosmic rays can provide a source of ionization and produce spallation reactions that alter the composition of planetesimals. This reconnection and particle acceleration are analogous to the physical processes that produce flaring in and heating of stellar coronae. Flaring events on the surface of the Sun exhibit a power-law distribution of energy, reminiscent of those measured for Earthquakes and avalanches. Numerical lattice-reconnection models are capable of reproducing the observed power-law behavior of solar flares under the paradigm of self-organized criticality. One interpretation of these experiments is that the solar corona maintains a nonlinear attractor -- or ``critical'' -- state by balancing energy input via braided magnetic fields and output via reconnection events. Motivated by these results, we generalize the lattice-reconnection formalism for applications in the truncation region of magnetized disks. Our numerical experiments demonstrate that these nonlinear dynamical systems are capable of both attaining and maintaining criticality in the presence of Keplerian shear and other complications. The resulting power-law spectrum of flare energies in the equilibrium attractor state is found to be nearly universal in magnetized disks. This finding indicates that magnetic reconnection and flaring in the inner regions of circumstellar disks occur in a manner similar to activity on stellar surfaces

    Cloud fragmentation and proplyd-like features in HII regions imaged by HST

    Full text link
    We have analyzed HST ACS and WFPC2 new and archival images of eight HII regions to look for new proto-planetary disks (proplyds) similar to those found in the Orion Nebula. We find a wealth of features similar in size (though many are larger) to the bright cusps around the Orion Nebula proplyds. None of them, however, contains a definitive central star. From this, we deduce that the new cusps may not be proplyds, but instead are fragments of molecular cloud material. Out of all the features found in the eight HII regions examined, only one, an apparent edge-on silhouette in M17, may have a central star. This feature might join the small number of bona fide proplyds found outside the Orion Nebula, in M8, M20 and possibly in M16. In line with the results found recently by Smith et al. (2005), the paucity of proplyds outside the Orion Nebula, may be explained by their transient nature as well as by the specific environmental conditions under whichthey can be observed.Comment: 51 pages; 19 figures; 5 tables. Accepted by A

    Massive open star clusters using the VVV survey II. Discovery of six clusters with Wolf-Rayet stars

    Get PDF
    Context: The ESO Public Survey "VISTA Variables in the V\'ia L\'actea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. In this survey nearly 150 new open clusters and cluster candidates have been discovered. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We affirm that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 10^3 Msol) clusters. They are highly obscured (Av ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 Msol for the WR stars. Finally,we discuss the spiral structure of the Galaxy using as tracers the six new clusters together with the previously studied VVV clusters.Comment: 17 pages, 8 figurs, accepted in A&

    Trapped surfaces, horizons and exact solutions in higher dimensions

    Get PDF
    A very simple criterion to ascertain if (D-2)-surfaces are trapped in arbitrary D-dimensional Lorentzian manifolds is given. The result is purely geometric, independent of the particular gravitational theory, of any field equations or of any other conditions. Many physical applications arise, a few shown here: a definition of general horizon, which reduces to the standard one in black holes/rings and other known cases; the classification of solutions with a (D-2)-dimensional abelian group of motions and the invariance of the trapping under simple dimensional reductions of the Kaluza-Klein/string/M-theory type. Finally, a stronger result involving closed trapped surfaces is presented. It provides in particular a simple sufficient condition for their absence.Comment: 7 pages, no figures, final version to appear in Class. Quantum Gra

    Exact Einstein-scalar field solutions for formation of black holes in a cosmological setting

    Get PDF
    We consider self-interacting scalar fields coupled to gravity. Two classes of exact solutions to Einstein's equations are obtained: the first class corresponds to the minimal coupling, the second one to the conformal coupling. One of the solutions is shown to describe a formation of a black hole in a cosmological setting. Some properties of this solution are described. There are two kinds of event horizons: a black hole horizon and cosmological horizons. The cosmological horizons are not smooth. There is a mild curvature singularity, which affects extended bodies but allows geodesics to be extended. It is also shown that there is a critical value for a parameter on which the solution depends. Above the critical point, the black hole singularity is hidden within a global black hole event horizon. Below the critical point, the singularity appears to be naked. The relevance to cosmic censorship is discussed.Comment: 25 pages, 2 figure

    The [O III] Veil: Astropause of Eta Carinae's Wind?

    Full text link
    We present narrowband images of eta Carinae in the light of [O III] 5007 obtained with HST/WFPC2, as well as a ground-based image in the same emission line with a larger field of view. These images show a thin veil of [O III] emission around eta Car and its ejecta, confirming the existence of an oxygen-bearing ``cocoon'' inferred from spectra. This [O III] veil may be the remnant of the pre-outburst wind of eta Car, and its outer edge probably marks the interface where eta Car's ejecta meet the stellar wind of the nearby O4 V((f)) star HD303308 or other ambient material -- i.e., it marks the ``astropause'' in eta Car's wind. This veil is part of a more extensive [O III] shell that appears to be shaped and ionized by HD303308. A pair of HST images with a 10 yr baseline shows no proper motion, limiting the expansion speed away from eta Car to 12pm13 km/s, or an expansion age of a few times 10^4 yr. Thus, this is probably the decelerated pre-outburst LBV wind of eta Car. The [O III] morphology is very different from that seen in [N II], which traces young knots of CNO-processed material; this represents a dramatic shift in the chemical makeup of material recently ejected by eta Car. This change in the chemical abundances may have resulted from the sudden removal of the star's outer envelope during eta Car's 19th century outburst or an earlier but similar event.Comment: 11 pages, 4 figs. Figs 1 and 3 in color. Accepted to AJ, October 200

    Stellar Rotation in Young Clusters. II. Evolution of Stellar Rotation and Surface Helium Abundance

    Get PDF
    We derive the effective temperatures and gravities of 461 OB stars in 19 young clusters by fitting the H-gamma profile in their spectra. We use synthetic model profiles for rotating stars to develop a method to estimate the polar gravity for these stars, which we argue is a useful indicator of their evolutionary status. We combine these results with projected rotational velocity measurements obtained in a previous paper on these same open clusters. We find that the more massive B-stars experience a spin down as predicted by the theories for the evolution of rotating stars. Furthermore, we find that the members of binary stars also experience a marked spin down with advanced evolutionary state due to tidal interactions. We also derive non-LTE-corrected helium abundances for most of the sample by fitting the He I 4026, 4387, 4471 lines. A large number of helium peculiar stars are found among cooler stars with Teff < 23000 K. The analysis of the high mass stars (8.5 solar masses < M < 16 solar masses) shows that the helium enrichment process progresses through the main sequence (MS) phase and is greater among the faster rotators. This discovery supports the theoretical claim that rotationally induced internal mixing is the main cause of surface chemical anomalies that appear during the MS phase. The lower mass stars appear to have slower rotation rates among the low gravity objects, and they have a large proportion of helium peculiar stars. We suggest that both properties are due to their youth. The low gravity stars are probably pre-main sequence objects that will spin up as they contract. These young objects very likely host a remnant magnetic field from their natal cloud, and these strong fields sculpt out surface regions with unusual chemical abundances.Comment: 50 pages 18 figures, accepted by Ap

    Higher education, mature students and employment goals: policies and practices in the UK

    Get PDF
    This article considers recent policies of Higher Education in the UK, which are aimed at widening participation and meeting the needs of employers. The focus is on the growing population of part-time students, and the implications of policies for this group. The article takes a critical perspective on government policies, using data from a major study of mature part-time students, conducted in two specialist institutions in the UK, a London University college and a distance learning university. Findings from this study throw doubt on the feasibility of determining a priori what kind of study pathway is most conducive for the individual in terms of employment gains and opportunities for upward social mobility. In conclusion, doubts are raised as to whether policies such as those of the present UK government are likely to achieve its aims. Such policies are not unique to the UK, and lessons from this country are relevant to most of the developed world

    On the Asymptotic Behaviour of Cosmological Models in Scalar-Tensor Theories of Gravity

    Full text link
    We study the qualitative properties of cosmological models in scalar-tensor theories of gravity by exploiting the formal equivalence of these theories with general relativity minimally coupled to a scalar field under a conformal transformation and field redefinition. In particular, we investigate the asymptotic behaviour of spatially homogeneous cosmological models in a class of scalar-tensor theories which are conformally equivalent to general relativistic Bianchi cosmologies with a scalar field and an exponential potential whose qualitative features have been studied previously. Particular attention is focussed on those scalar-tensor theory cosmological models, which are shown to be self-similar, that correspond to general relativistic models that play an important r\^{o}le in describing the asymptotic behaviour of more general models (e.g., those cosmological models that act as early-time and late-time attractors).Comment: 22 pages, submitted to Phys Rev
    • 

    corecore