3,985 research outputs found
Giant Octupole Resonance Simulation
Using a pseudo-particle technique we simulate large-amplitude isoscalar giant
octupole excitations in a finite nuclear system. Dependent on the initial
conditions we observe either clear octupole modes or over-damped octupole modes
which decay immediately into quadrupole ones. This shows clearly a behavior
beyond linear response. We propose that octupole modes might be observed in
central collisions of heavy ions
Effect of morphology and defectiveness of graphene-related materials on the electrical and thermal conductivity of their polymer nanocomposites
In this work, electrically and thermally conductive poly (butylene
terephthalate) nanocomposites were prepared by in-situ ring-opening
polymerization of cyclic butylene terephthalate (CBT) in presence of a
tin-based catalyst. One type of graphite nanoplatelets (GNP) and two different
grades of reduced graphene oxide (rGO) were used. Furthermore, high temperature
annealing treatment under vacuum at 1700{\deg}C was carried out on both RGO to
reduce their defectiveness and study the correlation between the
electrical/thermal properties of the nanocomposites and the nanoflakes
structure/defectiveness. The morphology and quality of the nanomaterials were
investigated by means of electron microscopy, x-ray photoelectron spectroscopy,
thermogravimetry and Raman spectroscopy. Thermal, mechanical and electrical
properties of the nanocomposites were investigated by means of rheology,
dynamic mechanical thermal analysis, volumetric resistivity and thermal
conductivity measurements. Physical properties of nanocomposites were
correlated with the structure and defectiveness of nanoflakes, evidencing a
strong dependence of properties on nanoflakes structure and defectiveness. In
particular, a significant enhancement of both thermal and electrical
conductivities was demonstrated upon the reduction of nanoflakes defectiveness
Temperature and thermodynamic instabilities in heavy ion collisions
We investigate thermodynamic properties and instability conditions in
intermediate energy heavy ion reactions. We define locally thermodynamic
variables, i.e. density, pressure and temperature, directly from the phase
space distribution of a relativistic transport calculation. In particular,
temperatures are determined by a fit to two covariant hot Fermi distributions
thus taking into account possible anisotropic momentum configurations. We
define instability independent from the nuclear matter spinodal by the
criterion that the effective compressibility becomes negative. The method is
applied to a semi-central Au on Au reaction at 600 MeV/nucleon. We investigate
in particular the center of the participant and the spectator matter. In the
latter we find a clear indication of instability with conditions of density and
temperature that are consistent with experimental determinations.Comment: 20 pages latex, 5 PS-figures, revised version (minor changes)
accepted for publication in Nucl. Phys.
Nuclear fragmentation: sampling the instabilities of binary systems
We derive stability conditions of Asymmetric Nuclear Matter () and
discuss the relation to mechanical and chemical instabilities of general
two-component systems. We show that the chemical instability may appear as an
instability of the system against isoscalar-like rather than isovector-like
fluctuations if the interaction between the two constituent species has an
attractive character as in the case of . This leads to a new kind of
liquid-gas phase transition, of interest for fragmentation experiments with
radioactive beams.Comment: 4 pages (LATEX), 3 Postscript figures, improved version, added
reference
The Dynamical Dipole Mode in Fusion Reactions with Exotic Nuclear Beams
We report the properties of the prompt dipole radiation, produced via a
collective bremsstrahlung mechanism, in fusion reactions with exotic beams. We
show that the gamma yield is sensitive to the density dependence of the
symmetry energy below/around saturation. Moreover we find that the angular
distribution of the emitted photons from such fast collective mode can
represent a sensitive probe of its excitation mechanism and of fusion dynamics
in the entrance channel.Comment: 5 pages, 3 figures, to appear in Phys.Rev.
Isospin fluctuations in spinodal decomposition
We study the isospin dynamics in fragment formation within the framework of
an analytical model based on the spinodal decomposition scenario. We calculate
the probability to obtain fragments with given charge and neutron number,
focussing on the derivation of the width of the isotopic distributions. Within
our approach this is determined by the dispersion of N/Z among the leading
unstable modes, due to the competition between Coulomb and symmetry energy
effects, and by isovector-like fluctuations present in the matter that
undergoes the spinodal decomposition. Hence the widths exhibit a clear
dependence on the properties of the Equation of State. By comparing two systems
with different values of the charge asymmetry we find that the isotopic
distributions reproduce an isoscaling relationship.Comment: 18 RevTex4 pages, 6 eps figure
Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates
We consider the lightly doped cuprates YCaBaCuO
and LaSrCuO (with ,0.04), where the presence of a
fluctuating nematic state has often been proposed as a precursor of the stripe
(or, more generically, charge-density wave) phase, which sets in at higher
doping. We phenomenologically assume a quantum critical character for the
longitudinal and transverse nematic, and for the charge-ordering fluctuations,
and investigate the effects of these fluctuations in Raman spectra. We find
that the longitudinal nematic fluctuations peaked at zero transferred momentum
account well for the anomalous Raman absorption observed in these systems in
the channel, while the absence of such effect in the channel
may be due to the overall suppression of Raman response at low frequencies,
associated with the pseudogap. While in YCaBaCuO the
low-frequency lineshape is fully accounted by longitudinal nematic collective
modes alone, in LaSrCuO also charge-ordering modes with finite
characteristic wavevector are needed to reproduce the shoulders observed in the
Raman response. This different involvement of the nearly critical modes in the
two materials suggests a different evolution of the nematic state at very low
doping into the nearly charge-ordered state at higher doping.Comment: 12 pages with 10 figures, to appear in Phys. Rev. B 201
Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization
Successful preparation of polymer nanocomposites, exploiting graphene-related
materials, via melt mixing technology requires precise design, optimization and
control of processing. In the present work, the effect of different processing
parameters during the preparation of poly (butylene terephthalate)
nanocomposites, through ring-opening polymerization of cyclic butylene
terephthalate in presence of graphite nanoplatelets (GNP), was thoroughly
addressed. Processing temperature (240{\deg}C or 260{\deg}C), extrusion time (5
or 10 minutes) and shear rate (50 or 100 rpm) were varied by means of a full
factorial design of experiment approach, leading to the preparation of
polybutylene terephthalate/GNP nanocomposite in 8 different processing
conditions. Morphology and quality of GNP were investigated by means of
electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry and
Raman spectroscopy. Molecular weight of the polymer matrix in nanocomposites
and nanoflake dispersion were experimentally determined as a function of the
different processing conditions. The effect of transformation parameters on
electrical and thermal properties was studied by means of electrical and
thermal conductivity measurement. Heat and charge transport performance
evidenced a clear correlation with the dispersion and fragmentation of the GNP
nanoflakes; in particular, gentle processing conditions (low shear rate, short
mixing time) turned out to be the most favourable condition to obtain high
conductivity values
Admissibility Region for Rarefaction Shock Waves in Dense Gases
In the vapour phase and close to the liquid–vapour saturation curve, fluids made of complex molecules are expected to exhibit a thermodynamic region in which the fundamental derivative of gasdynamic G is negative. In this region, non-classical
gasdynamic phenomena such as rarefaction shock waves are physically admissible, namely they obey the second law of thermodynamics and fulfil the speed-orienting condition for mechanical stability. Previous studies have demonstrated that the
thermodynamic states for which rarefaction shock waves are admissible are however not limited to the G <0 region. In this paper, the conditions for admissibility of rarefaction shocks are investigated. This results in the definition of a new thermodynamic region – the rarefaction shocks region – which embeds the G <0 region. The rarefaction shocks region is bounded by the saturation curve and by the locus of the states connecting double-sonic rarefaction shocks, i.e. shock waves in
which both the pre-shock and post-shock states are sonic. Only one double-sonic shock is shown to be admissible along a given isentrope, therefore the double-sonic states can be connected by a single curve in the volume–pressure plane. This curve is named
the double sonic locus. The influence of molecular complexity on the shape and size of the rarefaction shocks region is also illustrated by using the van der Waals model; these results are confirmed by very accurate multi-parameter thermodynamic models applied to siloxane fluids and are therefore of practical importance in experiments aimed at proving the existence of rarefaction shock waves in the single-phase vapour region as well as in future industrial applications operating in the non-classical regime
- …