In this work, electrically and thermally conductive poly (butylene
terephthalate) nanocomposites were prepared by in-situ ring-opening
polymerization of cyclic butylene terephthalate (CBT) in presence of a
tin-based catalyst. One type of graphite nanoplatelets (GNP) and two different
grades of reduced graphene oxide (rGO) were used. Furthermore, high temperature
annealing treatment under vacuum at 1700{\deg}C was carried out on both RGO to
reduce their defectiveness and study the correlation between the
electrical/thermal properties of the nanocomposites and the nanoflakes
structure/defectiveness. The morphology and quality of the nanomaterials were
investigated by means of electron microscopy, x-ray photoelectron spectroscopy,
thermogravimetry and Raman spectroscopy. Thermal, mechanical and electrical
properties of the nanocomposites were investigated by means of rheology,
dynamic mechanical thermal analysis, volumetric resistivity and thermal
conductivity measurements. Physical properties of nanocomposites were
correlated with the structure and defectiveness of nanoflakes, evidencing a
strong dependence of properties on nanoflakes structure and defectiveness. In
particular, a significant enhancement of both thermal and electrical
conductivities was demonstrated upon the reduction of nanoflakes defectiveness