45 research outputs found

    A label-free microfluidic assay to quantitatively study antibiotic diffusion through lipid membranes

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tWith the rise in antibiotic resistance amongst pathogenic bacteria, the study of antibiotic activity and transport across cell membranes is gaining widespread importance. We present a novel, label-free microfluidic assay that quantifies the permeability coefficient of a broad spectrum fluoroquinolone antibiotic, norfloxacin, across lipid membranes using the UV autofluorescence of the drug. We use giant lipid vesicles as highly controlled model systems to study the diffusion through lipid membranes. Our technique directly determines the permeability coefficient without requiring the measurement of the partition coefficient of the antibiotic.This work was supported by a European Research Council (ERC) grant (261101 PassMembrane) to UFK. JC acknowledges support from an Internal Graduate Studentship, Trinity College, Cambridge. CC is supported by the ERC. SP acknowledges the support of the Leverhulme Trust and the Newton Trust through an Early Career Fellowship. AJ is supported by the Mexican National Council of Science and Technology. We thank Thomas Muller for help with the lithography and Tuomas Knowles for the use of his lithography facilitie

    Optogenetic Analysis of Depolarization-Dependent Glucagonlike Peptide-1 Release

    Get PDF
    Incretin hormones play an important role in the regulation of food intake and glucose homeostasis. Glucagon-like peptide-1 (GLP-1) secreting cells have been demonstrated to be electrically excitable and to fire action potentials (APs) with increased frequency in response to nutrient exposure. However, nutrients can also be metabolised or activate G-protein-coupled receptors, thus potentially stimulate GLP-1 secretion independent of their effects on the plasma membrane potential. Here we used channelrhodopsins to manipulate the membrane potential of GLUTag cells, a well established model of GLP-1 secreting enteroendocrine L-cells. Using channelrhodopsins with fast or slow on/off kinetics (CheTA and SSFO, respectively), we found that trains of light pulses could trigger APs and calcium elevation in GLUTag cells stably expressing either CheTA or SSFO. Tetrodotoxin reduced light-triggered AP frequency but did not impair calcium responses, whereas further addition of the calcium channel blockers nifedipine and ω-conotoxin GVIA abolished both APs and calcium transients. Light pulse trains did not trigger GLP-1 secretion from CheTA-expressing cells under basal conditions, but were an effective stimulus when cAMP concentrations were elevated by forskolin plus IBMX. In SSFO-expressing cells, light-stimulated GLP-1 release was observed at resting and elevated cAMP concentrations and was blocked by nifedipine plus ω-conotoxin GVIA but not tetrodotoxin. We conclude that cAMP elevation or cumulative membrane depolarisation triggered by SSFO enhance the efficiency of light-triggered action potential firing, voltage gated calcium entry and GLP-1 secretion.Research in the Reimann/Gribble Laboratory is supported by the Wellcome Trust (106262/Z/14/Z, 106263/Z/14/Z) and the Medical Research Council (MRC; Grants MRC_MC_UU_12012/3 and MRC_MC_UU_12012/5). C.R. received support from the Zdenek et Michaela Bakala Foundation. GLP-1 assays were performed by the Core Biochemical Assay Laboratory (Grant MRC-MC_UU_12012/5)

    Functional Phenotype Flow Cytometry: On Chip Sorting of Individual Cells According to Responses to Stimuli

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThe ability to effectively separate and isolate biological cells into specific and well-defined subpopulations is crucial for the advancement of our understanding of cellular heterogeneity and its relevance to living systems. Here is described the development of the functional phenotype flow cytometer (FPFC), a new device designed to separate cells on the basis of their in situ real-time phenotypic responses to stimuli. The FPFC performs a cascade of cell processing steps on a microfluidic platform: introduces biological cells one at a time into a solution of a biological reagent that acts as a stimulus, incubates the cells with the stimulus solution in a flow, and sorts the cells into subpopulations according to their phenotypic responses to the provided stimulus. The presented implementation of the FPFC uses intracellular fluorescence as a readout, incubates cells for 75 s, and operates at a throughput of up to 4 cells min−1—resulting in the profiling and sorting of hundreds of cells within a few hours. The design and operation of the FPFC are validated by sorting cells from the human Burkitt's lymphoma cancerous cell line Ramos on the basis of their response to activation of the B cell antigen receptor (BCR) by a targeted monoclonal antibody.Biotechnology & Biological Sciences Research Council (BBSRC)Academy of Medical SciencesSN

    Interaction of Clostridium perfringens epsilon toxin with the plasma membrane: The role of amino acids Y42, Y43 and H162

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. Data Availability Statement: The data presented in this study are available on request from the corresponding authors.Clostridium perfringens epsilon toxin (Etx) is a pore forming toxin that causes enterotoxaemia in ruminants and may be a cause of multiple sclerosis in humans. To date, most in vitro studies of Etx have used the Madin-Darby canine kidney (MDCK) cell line. However, studies using Chinese hamster ovary (CHO) cells engineered to express the putative Etx receptor, myelin and lymphocyte protein (MAL), suggest that amino acids important for Etx activity differ between species. In this study, we investigated the role of amino acids Y42, Y43 and H162, previously identified as important in Etx activity towards MDCK cells, in Etx activity towards CHO-human MAL (CHO-hMAL) cells, human red blood cells (hRBCs) and synthetic bilayers using site-directed mutants of Etx. We show that in CHO-hMAL cells Y42 is critical for Etx binding and not Y43 as in MDCK cells, indicating that surface exposed tyrosine residues in the receptor binding domain of Etx impact efficiency of cell binding to MAL-expressing cells in a species-specific manner. We also show that Etx mutant H162A was unable to lyse CHO-hMAL cells, lysed hRBCs, whilst it was able to form pores in synthetic bilayers, providing evidence of the complexity of Etx pore formation in different lipid environments.Engineering and Physical Sciences Research Council (EPSRC)Academy of Medical Sciences, Springboard AwardEngineering and Physical Sciences Research Counci

    Comprehensive analysis of temporal alterations in cellular proteome of bacillus subtilis under curcumin treatment

    Get PDF
    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division

    Parallel sub-micrometre channels with different dimensions for laser scattering detection.

    No full text
    A novel and simple approach for the realization of polymer sub-micrometre channels is introduced by exploiting replica molding of Pt wires deposited by focused ion beam. We fabricate arrays of parallel channels with typical dimensions down to 600 nm and with variable height. We characterize the pressure-driven transport of polymer colloids through the channels in terms of the translocation frequency, amplitude and duration by implementing a laser scattering detection technique. We propose a prototype application of the presented platform such as the in situ sizing and sensing of populations of particles with different dimensions down to 50 nm

    Miniaturized planar lipid bilayer: increased stability, low electric noise and fast fluid perfusion

    No full text
    A microfluidic device was designed allowing the formation of a planar lipid bilayer across a micron-sized aperture in a glass slide sandwiched between two polydimethylsiloxane channel systems. By flushing giant unilamellar vesicles through a 500-microm-wide channel above the hole, we were able to form a planar lipid bilayer across the hole, resulting in a giga-seal. We demonstrate incorporation of biological nanopores into the bilayer. This miniaturized system offers noise recordings comparable to open head-stage noise (under 1 pA RMS at 10 kHz), fast precision perfusion on each side of the membrane and the use of nanoliter analyte volumes. This technique shows a promising potential for automation and parallelization of electrophysiological setups

    Indole Transport across Escherichia coli Membranes ▿

    Get PDF
    Indole has many, diverse roles in bacterial signaling. It regulates the transition from exponential to stationary phase, it is involved in the control of plasmid stability, and it influences biofilm formation, virulence, and stress responses (including antibiotic resistance). Its role is not restricted to bacteria, and recently it has been shown to include mutually beneficial signaling between enteric bacteria and their mammalian hosts. In many respects indole behaves like the signaling component of a quorum-sensing system. Indole synthesized within the producer bacterium is exported into the surroundings where its accumulation is detected by sensitive cells. A view often repeated in the literature is that in Escherichia coli the AcrEF-TolC and Mtr transporter proteins are involved in the export and import, respectively, of indole. However, the evidence for their involvement is indirect, and it has been known for a long time that indole can pass directly through a lipid bilayer. We have combined in vivo and in vitro approaches to examine the relative importance of protein-mediated transport and direct passage across the E. coli membrane. We conclude that the movement of indole across the E. coli membrane under normal physiological conditions is independent of AcrEF-TolC and Mtr. Furthermore, direct observation of individual liposomes shows that indole can rapidly cross an E. coli lipid membrane without the aid of any proteinaceous transporter. These observations not only enhance our understanding of indole signaling in bacteria but also provide a simple explanation for the ability of indole to signal between biological kingdoms
    corecore