174 research outputs found

    Toward Five-dimensional Core-collapse Supernova Simulations

    Full text link
    The computational difficulty of six-dimensional neutrino radiation hydrodynamics has spawned a variety of approximations, provoking a long history of uncertainty in the core-collapse supernova explosion mechanism. Under the auspices of the Terascale Supernova Initiative, we are honoring the physical complexity of supernovae by meeting the computational challenge head-on, undertaking the development of a new adaptive mesh refinement code for self-gravitating, six-dimensional neutrino radiation magnetohydrodynamics. This code--called {\em GenASiS,} for {\em Gen}eral {\em A}strophysical {\em Si}mulation {\em S}ystem--is designed for modularity and extensibility of the physics. Presently in use or under development are capabilities for Newtonian self-gravity, Newtonian and special relativistic magnetohydrodynamics (with `realistic' equation of state), and special relativistic energy- and angle-dependent neutrino transport--including full treatment of the energy and angle dependence of scattering and pair interactions.Comment: 5 pages. Proceedings of SciDAC 2005, Scientific Discovery through Advanced Computing, San Francisco, CA, 26-30 June 200

    Can a "natural" three-generation neutrino mixing scheme satisfy everything?

    Get PDF
    We examine the potential for a ``natural'' three-neutrino mixing scheme to satisfy available data and astrophysical arguments. By ``natural'' we mean no sterile neutrinos, and a neutrino mass hierarchy similar to that of the charged leptons. We seek to satisfy (or solve): 1. Accelerator and reactor neutrino oscillation constraints, including LSND; 2. The atmospheric muon neutrino deficit problem; 3. The solar neutrino problem; 4. Supernova r-process nucleosynthesis in neutrino-heated supernova ejecta; 5. Cold+hot dark matter models. We argue that putative supernova r-process nucleosynthesis bounds on two-neutrino flavor mixing can be applied directly to three-neutrino mixing in the case where one vacuum neutrino mass eigenvalue difference dominates the others. We show that in this ``one mass scale dominance'' limit, a natural three-neutrino oscillation solution meeting all the above constraints exists only if the atmospheric neutrino data {\em and} the LSND data can be explained with one neutrino mass difference. In this model, an explanation for the solar neutrino data can be effected by employing the {\em other} independent neutrino mass difference. Such a solution is only marginally allowed by the current data, and proposed long-baseline neutrino oscillation experiments can definitively rule it out. If it were ruled out, the simultaneous solution of the above constraints by neutrino oscillations would then require sterile neutrinos and/or a neutrino mass hierarchy of a different nature than that of the charged leptons

    Gravitational Effects on the Neutrino Oscillation

    Get PDF
    The propagation of neutrinos in a gravitational field is studied. A method of calculating a covariant quantum-mechanical phase in a curved space-time is presented. The result is used to calculate gravitational effects on the neutrino oscillation in the presence of a gravitational field. We restrict our discussion to the case of the Schwartzschild metric. Specifically, the cases of the radial propagation and the non-radial propagation are considered. A possible application to gravitational lensing of neutrinos is also suggested.Comment: 15 pages, RevTex, No figures. Minor modifications and some typos correcte

    Flavor-oscillation clocks, continuous quantum measurements and a violation of Einstein equivalence principle

    Get PDF
    The relation between Einstein equivalence principle and a continuous quantum measurement is analyzed in the context of the recently proposed flavor-oscillation clocks, an idea pioneered by Ahluwalia and Burgard (Gen. Rel Grav. Errata 29, 681 (1997)). We will calculate the measurement outputs if a flavor-oscillation clock, which is immersed in a gravitational field, is subject to a continuous quantum measurement. Afterwards, resorting to the weak equivalence principle, we obtain the corresponding quantities in a freely falling reference frame. Finally, comparing this last result with the measurement outputs that would appear in a Minkowskian spacetime it will be found that they do not coincide, in other words, we have a violation of Einstein equivalence principle. This violation appears in two different forms, namely: (i) the oscillation frequency in a freely falling reference frame does not match with the case predicted by general relativity, a feature previously obtained by Ahluwalia; (ii) the probability distribution of the measurement outputs, obtained by an observer in a freely falling reference frame, does not coincide with the results that would appear in the case of a Minkowskian spacetime.Comment: 16 pages, accepted in Mod. Phys. Letts.

    The effect of very low energy solar neutrinos on the MSW mechanism

    Full text link
    We study some implications on standard matter oscillations of solar neutrinos induced by a background of extremely low energy thermal neutrinos trapped inside the Sun by means of coherent refractive interactions. Possible experimental tests are envisaged and current data on solar neutrinos detected at Earth are briefly discussed.Comment: RevTex4, 4 pages, no figure

    Mass dependence of the gravitationally-induced wave-function phase

    Get PDF
    The leading mass dependence of the wave function phase is calculated in the presence of gravitational interactions. The conditions under which this phase contains terms depending on both the square of the mass and the gravitational constant are determined. The observability of such terms is briefly discussed.Comment: 5 pages, no figures, requires Revtex. The discussion has been extended and clarifie

    Rotation intrinsic spin coupling--the parallelism description

    Get PDF
    For the Dirac particle in the rotational system, the rotation induced inertia effect is analogously treated as the modification of the "spin connection" on the Dirac equation in the flat spacetime, which is determined by the equivalent tetrad. From the point of view of parallelism description of spacetime, the obtained torsion axial-vector is just the rotational angular velocity, which is included in the "spin connection". Furthermore the axial-vector spin coupling induced spin precession is just the rotation-spin(1/2) interaction predicted by Mashhoon. Our derivation treatment is straightforward and simplified in the geometrical meaning and physical conception, however the obtained conclusions are consistent with that of the other previous work.Comment: 10 pages, no figur

    Neutrino oscillation in a space-time with torsion

    Get PDF
    Using the Einstein-Cartan-Dirac theory, we study the effect of torsion on neutrino oscillation. We see that torsion cannot induce neutrino oscillation, but affects it whenever oscillation exists for other reasons. We show that the torsion effect on neutrino oscillation is as important as the neutrino mass effect, whenever the ratio of neutrino number density to neutrino energy is ∌1069\sim 10^{69} cm−3^{-3} /eV, or the number density of the matter is ∌1069\sim 10^{69} cm−3^{-3}.Comment: 7 pages, LaTex,Some typos corrected Journal: Int. J. Mod. Phys. A (1999) (will be appeared
    • 

    corecore