1,126 research outputs found

    State estimation: direct state measurement vs. tomography

    Full text link
    We compare direct state measurement (DST or weak state tomography) to conventional state reconstruction (tomography) through accurate Monte-Carlo simulations. We show that DST is surprisingly robust to its inherent bias. We propose a method to estimate such bias (which introduces an unavoidable error in the reconstruction) from the experimental data. As expected we find that DST is much less precise than tomography. We consider both finite and infinite-dimensional states of the DST pointer, showing that they provide comparable reconstructions.Comment: 4 pages, 4 figure

    Testing the Kerr black hole hypothesis

    Full text link
    It is thought that the final product of the gravitational collapse is a Kerr black hole and astronomers have discovered several good astrophysical candidates. While there is some indirect evidence suggesting that the latter have an event horizon, and therefore that they are black holes, a proof that the space-time around these objects is described by the Kerr geometry is still lacking. Recently, there has been an increasing interest in the possibility of testing the Kerr black hole hypothesis with present and future experiments. In this paper, I briefly review the state of the art of the field, focussing on some recent results and work in progress.Comment: Brief review; 15 pages, no figures. v3: references added, some typos correcte

    Il Concilio Vaticano II attraverso lo studio degli Archivi dei Padri conciliari

    Get PDF

    Linear Stability Analysis of a Levitated Nanomagnet in a Static Magnetic Field: Quantum Spin Stabilized Magnetic Levitation

    Full text link
    We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite of the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.Comment: Published version. 10 pages, 4 figures, 3 table

    Gravitomagnetism in superconductors and compact stars

    Full text link
    There are three experimentally observed effects in rotating superconductors that are so far unexplained. Some authors have tried to interpret such a phenomena as possible new gravitational properties of coherent quantum systems: in particular, they suggest that the gravitomagnetic field of that kind of matter may be many orders of magnitude stronger than the one expected in the standard theory. Here I show that this interpretation would be in conflict with the common belief that neutron stars have neutrons in superfluid state and protons in superconductive one.Comment: 9 pages, no figur

    Possible ~ 1 hour quasi-periodic oscillation in narrow-line Seyfert 1 galaxy MCG--06--30--15

    Full text link
    We found a possible ~ 1 hour quasi-periodic oscillation (QPO) in a ~ 55 ks X-ray observation of the narrow-line Seyfert 1 galaxy MCG--06--30--15 made with the XMM-Newton EPIC/pn detector in the energy range 0.3 -- 10 keV. We identify a total modulation of ~ 16% in the light curve and find a ≃\simeq 3670~s quasi-period using Lomb-Scargle periodogram (LSP) and weighted wavelet Z-transform (WWZ) techniques. Our analyses of eight light curves of MCG--06--30--15, indicated the possible presence of an oscillation during one of them. The LSP indicates a statistically significant (≃\simeq 3σ\sigma) QPO detection. A WWZ analysis shows that the signal at this possible roughly 3670s period is present, and rather persistent, throughout the observation; however, a signal around 8735s is more persistent. We briefly discuss models that can produce X-ray QPOs with such periods in narrow line Seyfert 1 galaxies, as both other claimed QPO detections in this class of AGN had very similar periods.Comment: 5 pages, 4 figures, Published in A&A Letter

    Quantum Spin Stabilized Magnetic Levitation

    Get PDF
    We theoretically show that, despite Earnshaw's theorem, a non-rotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein--de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.Comment: Published version. 5 pages, 2 figure

    3D simulations of the accretion process in Kerr space-time with arbitrary value of the spin parameter

    Full text link
    We present the results of three-dimensional general relativistic hydrodynamic simulations of adiabatic and spherically symmetric accretion in Kerr space-time. We consider compact objects with spin parameter ∣a∗∣≤1|a_*| \le 1 (black holes) and with ∣a∗∣>1|a_*| > 1 (super-spinars). Our full three-dimensional simulations confirm the formation of equatorial outflows for high values of ∣a∗∣|a_*|, as found in our previous work in 2.5 dimensions. We show that the critical value of ∣a∗∣|a_*| determining the onset of powerful outflows depends mainly on the radius of the compact object. The phenomenon of equatorial outflows can hardly occur around a black hole and may thus be used to test the bound ∣a∗∣≤1|a_*| \le 1 for astrophysical black hole candidates.Comment: 13 pages, 9 figures. v2: refereed versio

    Detection of a quasi-periodic oscillation in gamma-ray light curve of the high redshift blazar B2 1520+31

    Full text link
    We detected a possible quasi-periodic oscillation (QPO) of ~ 71 days in the 0.1 -- 300 GeV gamma-ray Fermi-LAT light curve of the high redshift flat spectrum radio quasar B2 1520+31. We identify and confirm that quasi-period by Lomb Scargle periodogram (LSP), and weighted wavelet z-transform (WWZ) analyses. Using this QPO period, and assuming it originates from accretion-disc fluctuations at the innermost stable circular orbit, we estimate the central supermassive black hole mass to range between ~ 5.4 * 109^{9} M⊙_{\odot} for a non-rotating black hole and ~ 6.0 * 1010^{10} M⊙_{\odot} for a maximally rotating black hole. We briefly discuss other possible radio-loud active galactic nuclei emission models capable of producing a gamma-ray QPO of such a period in a blazar.Comment: 6 pages, 4 figures, Submitted to MNRA
    • …
    corecore