103 research outputs found
Analysis of Synaptic Proteins in the Cerebrospinal Fluid as a New Tool in the Study of Inborn Errors of Neurotransmission
Abstract In a few rare diseases, specialised studies in cerebrospinal fluid (CSF) are required to identify the underlying metabolic disorder. We aimed to explore the
possibility of detecting key synaptic proteins in the CSF, in particular dopaminergic and gabaergic, as new procedures
that could be useful for both pathophysiological and diagnostic purposes in investigation of inherited disorders
of neurotransmission. Dopamine receptor type 2 (D2R), dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were analysed in CSF samplesfrom 30 healthy controls (11 days to 17 years) by western blot analysis. Because VMAT2 was the only protein with intracellular localisation, and in order to compare results, GABA vesicular transporter, which is another intracellular protein, was also studied. Spearman’s correlation and
Student’s t tests were applied to compare optical density signals between different proteins. All these synaptic proteins could be easily detected and quantified in the
CSF. DAT, D2R and GABA VT expression decrease with age, particularly in the first months of life, reflecting the expected intense synaptic activity and neuronal circuitry formation. A statistically significant relationship was found
between D2R and DAT expression, reinforcing the previous evidence of DAT regulation by D2R. To our knowledge, there are no previous studies on human CSF reporting a reliable
analysis of these proteins. These kinds of studies could help elucidate new causes of disturbed dopaminergic and gabaergic
transmission as well as understanding different responses to L-dopa in inherited disorders affecting dopamine metabolism.
Moreover, this approach to synaptic activity in vivo can be extended to different groups of proteins and diseases
Knotted vs. Unknotted Proteins: Evidence of Knot-Promoting Loops
Knotted proteins, because of their ability to fold reversibly in the same topologically entangled conformation, are the object of an increasing number of experimental and theoretical studies. The aim of the present investigation is to assess, on the basis of presently available structural data, the extent to which knotted proteins are isolated instances in sequence or structure space, and to use comparative schemes to understand whether specific protein segments can be associated to the occurrence of a knot in the native state. A significant sequence homology is found among a sizeable group of knotted and unknotted proteins. In this family, knotted members occupy a primary sub-branch of the phylogenetic tree and differ from unknotted ones only by additional loop segments. These "knot-promoting" loops, whose virtual bridging eliminates the knot, are found in various types of knotted proteins. Valuable insight into how knots form, or are encoded, in proteins could be obtained by targeting these regions in future computational studies or excision experiments
The Cryo-EM Structure of a Complete 30S Translation Initiation Complex from Escherichia coli
Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation
Effects of Restrained Sampling Space and Nonplanar Amino Groups on Free-Energy Predictions for RNA with Imino and Sheared Tandem GA Base Pairs Flanked by GC, CG, iGiC or iCiG Base Pairs
Guanine-adenine (GA) base pairs play important roles in determining the structure, dynamics, and stability of RNA. In RNA internal loops, GA base pairs often occur in tandem arrangements and their structure is context and sequence dependent. Calculations reported here test the thermodynamic integration (TI) approach with the amber99 force field by comparing computational predictions of free energy differences with the free energy differences expected on the basis of NMR determined structures of the RNA motifs (5′-GCGGACGC-3′)2, (5′-GCiGGAiCGC-3′)2, (5′-GGCGAGCC-3′)2, and (5′-GGiCGAiGCC-3′)2. Here, iG and iC denote isoguanosine and isocytidine, which have amino and carbonyl groups transposed relative to guanosine and cytidine. The NMR structures show that the GA base pairs adopt either imino (cis Watson−Crick/Watson−Crick A-G) or sheared (trans Hoogsteen/Sugar edge A-G) conformations depending on the identity and orientation of the adjacent base pair. A new mixing function for the TI method is developed that allows alchemical transitions in which atoms can disappear in both the initial and final states. Unrestrained calculations gave ΔG° values 2−4 kcal/mol different from expectations based on NMR data. Restraining the structures with hydrogen bond restraints did not improve the predictions. Agreement with NMR data was improved by 0.7 to 1.5 kcal/mol, however, when structures were restrained with weak positional restraints to sample around the experimentally determined NMR structures. The amber99 force field was modified to partially include pyramidalization effects of the unpaired amino group of guanosine in imino GA base pairs. This provided little or no improvement in comparisons with experiment. The marginal improvement is observed when the structure has potential cross-strand out-of-plane hydrogen bonding with the G amino group. The calculations using positional restraints and a nonplanar amino group reproduce the signs of ΔG° from the experimental results and are, thus, capable of providing useful qualitative insights complementing the NMR experiments. Decomposition of the terms in the calculations reveals that the dominant terms are from electrostatic and interstrand interactions other than hydrogen bonds in the base pairs. The results suggest that a better description of the backbone is key to reproducing the experimental free energy results with computational free energy predictions
- …