250 research outputs found
Determinants of the temperature adaptation of mRNA degradation
The rate of chemical reactions increases proportionally with temperature, but the interplay of biochemical reactions permits deviations from this relation and adaptation. The degradation of individual mRNAs in yeast increased to varying degrees with temperature. We examined how these variations are influenced by the translation and codon composition of mRNAs. We developed a method that revealed the existence of a neutral half-life above which mRNAs are stabilized by translation but below which they are destabilized. The proportion of these two mRNA subpopulations remained relatively constant under different conditions, even with slow cell growth due to nutrient limitation, but heat shock reduced the proportion of translationally stabilized mRNAs. At the same time, the degradation of these mRNAs was partially temperature-compensated through Upf1, the mediator of nonsense-mediated decay. Compensation was also promoted by some asparagine and serine codons, whereas tyrosine codons promote temperature sensitization. These codons play an important role in the degradation of mRNAs encoding key cell membrane and cell wall proteins, which promote cell integrity
Modelling of the regulation of the hilA promoter of type three secretion system of Salmonella enterica serovar Typhimurium
One of the most common modes of secretion of toxins in gram-negative bacteria is via the type three secretion system (TTSS), which enables the toxins to be specifically exported into the host cell. The hilA gene product is a key regulator of the expression of the TTSS located on the pathogenicity island (SPI-1) of Salmonella enterica serovar Typhimurium. It has been proposed earlier that the regulation of HilA expression is via a complex feedforward loop involving the transactivators HilD, HilC and RtsA. In this paper, we have constructed a mathematical model of regulation of hilA-promoter by all the three activators using two feedforward loops. We have modified the model to include additional complexities in regulation such as the proposed positive feedback and cross regulations of the three transactivators. Results of the various models indicate that the basic model involving two Type I coherent feedforward loops with an OR gate is sufficient to explain the published experimental observations. We also discuss two scenarios where the regulation can occur via monomers or heterodimers of the transactivators and propose experiments that can be performed to distinguish the two modes of regulator function
Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression
Background
Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques.
Results
We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels.
Conclusions
Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors
Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution
During evolution, genetic networks are rewired through strengthening or weakening their interactions to develop new regulatory schemes. In the galactose network, the GAL1/GAL3 paralogues and the GAL2 gene enhance their own expression mediated by the Gal4p transcriptional activator. The wiring strength in these feedback loops is set by the number of Gal4p binding sites. Here we show using synthetic circuits that multiplying the binding sites increases the expression of a gene under the direct control of an activator, but this enhancement is not fed back in the circuit. The feedback loops are rather activated by genes that have frequent stochastic bursts and fast RNA decay rates. In this way, rapid adaptation to galactose can be triggered even by weakly expressed genes. Our results indicate that nonlinear stochastic transcriptional responses enable feedback loops to function autonomously, or contrary to what is dictated by the strength of interactions enclosing the circuit
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
Nucleocytoplasmic transport: a thermodynamic mechanism
The nuclear pore supports molecular communication between cytoplasm and
nucleus in eukaryotic cells. Selective transport of proteins is mediated by
soluble receptors, whose regulation by the small GTPase Ran leads to cargo
accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear
export. We consider the operation of this transport system by a combined
analytical and experimental approach. Provocative predictions of a simple model
were tested using cell-free nuclei reconstituted in Xenopus egg extract, a
system well suited to quantitative studies. We found that accumulation capacity
is limited, so that introduction of one import cargo leads to egress of
another. Clearly, the pore per se does not determine transport directionality.
Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic
concentration in steady-state. The model shows that this ratio should in fact
be independent of the receptor-cargo affinity, though kinetics may be strongly
influenced. Numerical conservation of the system components highlights a
conflict between the observations and the popular concept of transport cycles.
We suggest that chemical partitioning provides a framework to understand the
capacity to generate concentration gradients by equilibration of the
receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures,
plus Supplementary Material include
MicroRNA-Mediated Positive Feedback Loop and Optimized Bistable Switch in a Cancer Network Involving miR-17-92
MicroRNAs (miRNAs) are small, noncoding RNAs that play an important role in many key biological processes, including development, cell differentiation, the cell cycle and apoptosis, as central post-transcriptional regulators of gene expression. Recent studies have shown that miRNAs can act as oncogenes and tumor suppressors depending on the context. The present work focuses on the physiological significance of miRNAs and their role in regulating the switching behavior. We illustrate an abstract model of the Myc/E2F/miR-17-92 network presented by Aguda et al. (2008), which is composed of coupling between the E2F/Myc positive feedback loops and the E2F/Myc/miR-17-92 negative feedback loop. By systematically analyzing the network in close association with plausible experimental parameters, we show that, in the presence of miRNAs, the system bistability emerges from the system, with a bistable switch and a one-way switch presented by Aguda et al. instead of a single one-way switch. Moreover, the miRNAs can optimize the switching process. The model produces a diverse array of response-signal behaviors in response to various potential regulating scenarios. The model predicts that this transition exists, one from cell death or the cancerous phenotype directly to cell quiescence, due to the existence of miRNAs. It was also found that the network involving miR-17-92 exhibits high noise sensitivity due to a positive feedback loop and also maintains resistance to noise from a negative feedback loop
Synthetic biology: Understanding biological design from synthetic circuits
An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics
Bistability and Oscillations in Gene Regulation Mediated by Small Noncoding RNAs
The interplay of small noncoding RNAs (sRNAs), mRNAs, and proteins has been shown to play crucial roles in almost all cellular processes. As key post-transcriptional regulators of gene expression, the mechanisms and roles of sRNAs in various cellular processes still need to be fully understood. When participating in cellular processes, sRNAs mainly mediate mRNA degradation or translational repression. Here, we show how the dynamics of two minimal architectures is drastically affected by these two mechanisms. A comparison is also given to reveal the implication of the fundamental differences. This study may help us to analyze complex networks assembled by simple modules more easily. A better knowledge of the sRNA-mediated motifs is also of interest for bio-engineering and artificial control
Skin and skeletal system lesions of european pond turtles (Emys orbicularis) from natural habitats
Water pollution is known to play an important role in the pathogenesis of plastron, carapace and skin diseases of turtles. In this study, a total of 150 European pond turtles (Emys orbicularis) of different age and both sexes, originating from natural habitats in Serbia, were examined for morphological changes of the skin, plastron, carapace and skeletal system. The turtles were taken out from their natural habitats in Lake Ludas, Lake Palic and Lake Tresetiste. After artificial hibernation, they were subjected to detailed examination, sampled and treated, and finally returned into their natural habitat. Biopsies from the skin and shell were subjected to histopathological examination and microbiological analysis. X-ray scanning was also performed to detect changes in the skeletal system. Macroscopic changes of the skin, most frequently degenerative, inflammatory or neoplastic diseases, were diagnosed in 49.33% of the turtles examined. Dermatitis of different origin and form was the most prominent histopathological finding (28.00%). In the plastron, inflammatory and degenerative processes were frequently found. Osteopathy and mechanical injuries were the dominant findings. Macroscopic changes of the plastron, carapace and skeletal system were diagnosed in 67.33% of the turtles examined. Using X-ray scanning, generalised osteopathy, anomalies and malformations of different aetiology were also diagnosed on the tail and legs. Microbiological examinations showed the presence of a variety of bacterial and fungal agents, either primary pathogens or potential polluters, which invaded the skin and shell, or were present in cloacal swab samples. Bacterial infection was diagnosed in 76.66% of the turtles, first of all in those with skin and shell necrosis. Mycoses were diagnosed in 33.33% of the animals
- …