2,610 research outputs found

    Intrinsic avalanches and collective phenomena in a Mn(II)-free radical ferrimagnetic chain

    Full text link
    Magnetic hysteresis loops below 300 mK on single crystals of the Mn(II) - nitronyl nitroxide free radical chain (Mn(hfac)_2({\it R})-3MLNN) present abrupt reversals of the magnetization, or avalanches. We show that, below 200 mK, the avalanches occur at a constant field, independent of the sample and so propose that this avalanche field is an intrinsic property. We compare this field to the energy barrier existing in the sample and conclude that the avalanches are provoked by multiple nucleation of domain-walls along the chains. The different avalanche field observed in the zero field cooled magnetization curves suggests that the avalanche mechanisms are related to the competition between ferromagnetic and antiferromagnetic order in this compound.Comment: 9 pages, 7 fig, to be published in Phys. Rev.

    DFT Calculations as a Tool to Analyse Quadrupole Splittings of Spin Crossover Fe(II) complexes

    Full text link
    Density functional methods have been applied to calculate the quadrupole splitting of a series of iron(II) spin crossover complexes. Experimental and calculated values are in reasonable agreement. In one case spin-orbit coupling is necessary to explain the very small quadrupole splitting value of 0.77 mm/s at 293 K for a high-spin isomer

    Superconductivity and magnetic order in the non-centrosymmetric Half Heusler compound ErPdBi

    Get PDF
    We report superconductivity at Tc=1.22T_c = 1.22 K and magnetic order at TN=1.06T_N = 1.06 K in the semi-metallic noncentrosymmetric Half Heusler compound ErPdBi. The upper critical field, Bc2B_{c2}, has an unusual quasi-linear temperature variation and reaches a value of 1.6 T for T0T \rightarrow 0. Magnetic order is found below TcT_c and is suppressed at BM2.5B{_M} \sim 2.5 T for T0T \rightarrow 0. Since TcTNT_c \simeq T_N, the interaction of superconductivity and magnetism is expected to give rise to a complex ground state. Moreover, electronic structure calculations show ErPdBi has a topologically nontrivial band inversion and thus may serve as a new platform to study the interplay of topological states, superconductivity and magnetic order.Comment: 6 pages, 5 figures; accepted for publication in Europhysics Letter

    Connes' embedding problem and Tsirelson's problem

    Get PDF
    We show that Tsirelson's problem concerning the set of quantum correlations and Connes' embedding problem on finite approximations in von Neumann algebras (known to be equivalent to Kirchberg's QWEP conjecture) are essentially equivalent. Specifically, Tsirelson's problem asks whether the set of bipartite quantum correlations generated between tensor product separated systems is the same as the set of correlations between commuting C*-algebras. Connes' embedding problem asks whether any separable II1_1 factor is a subfactor of the ultrapower of the hyperfinite II1_1 factor. We show that an affirmative answer to Connes' question implies a positive answer to Tsirelson's. Conversely, a positve answer to a matrix valued version of Tsirelson's problem implies a positive one to Connes' problem

    Domain Wall Spin Dynamics in Kagome Antiferromagnets

    Full text link
    We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin-flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.Comment: 5 pages, 4 figure

    Zinc stress induces copper depletion in Acinetobacter baumannii

    Get PDF
    Background: The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. Results: We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Conclusions: Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.Karl A. Hassan, Victoria G. Pederick, Liam D. H. Elbourne, Ian T. Paulsen, James C. Paton, Christopher A. McDevitt and Bart A. Eijkelkam

    Subtle competition between ferromagnetic and antiferromagnetic order in a Mn(II) - free radical ferrimagnetic chain

    Full text link
    The macroscopic magnetic characterization of the Mn(II) - nitronyl nitroxide free radical chain (Mn(hfac)2(R)-3MLNN) evidenced its transition from a 1-dimensional behavior of ferrimagnetic chains to a 3-dimensional ferromagnetic long range order below 3 K. Neutron diffraction experiments, performed on a single crystal around the transition temperature, led to a different conclusion : the magnetic Bragg reflections detected below 3 K correspond to a canted antiferromagnet where the magnetic moments are mainly oriented along the chain axis. Surprisingly in the context of other compounds in this family of magnets, the interchain coupling is antiferromagnetic. This state is shown to be very fragile since a ferromagnetic interchain arrangement is recovered in a weak magnetic field. This peculiar behavior might be explained by the competition between dipolar interaction, shown to be responsible for the antiferromagnetic long range order below 3 K, and exchange interaction, the balance between these interactions being driven by the strong intrachain spin correlations. More generally, this study underlines the need, in this kind of molecular compounds, to go beyond macroscopic magnetization measurements.Comment: 12 pages, 10 figures, submitted to Phys. Rev.

    Quantum state estimation and large deviations

    Full text link
    In this paper we propose a method to estimate the density matrix \rho of a d-level quantum system by measurements on the N-fold system. The scheme is based on covariant observables and representation theory of unitary groups and it extends previous results concerning the estimation of the spectrum of \rho. We show that it is consistent (i.e. the original input state \rho is recovered with certainty if N \to \infty), analyze its large deviation behavior, and calculate explicitly the corresponding rate function which describes the exponential decrease of error probabilities in the limit N \to \infty. Finally we discuss the question whether the proposed scheme provides the fastest possible decay of error probabilities.Comment: LaTex2e, 40 pages, 2 figures. Substantial changes in Section 4: one new subsection (4.1) and another (4.2 was 4.1 in the previous version) completely rewritten. Minor changes in Sect. 2 and 3. Typos corrected. References added. Accepted for publication in Rev. Math. Phy

    M\"ossbauer, nuclear inelastic scattering and density functional studies on the second metastable state of Na2[Fe(CN)5NO]\cdot2H2O

    Full text link
    The structure of the light-induced metastable state SII of Na2[Fe(CN)5NO]\cdot2H2O 14 was investigated by transmission M\"ossbauer spectroscopy (TMS) in the temperature range 15 between 85 and 135 K, nuclear inelastic scattering (NIS) at 98 K using synchrotron 16 radiation and density functional theory (DFT) calculations. The DFT and TMS results 17 strongly support the view that the NO group in SII takes a side-on molecular orientation 18 and, further, is dynamically displaced from one eclipsed, via a staggered, to a second 19 eclipsed orientation. The population conditions for generating SII are optimal for 20 measurements by TMS, yet they are modest for accumulating NIS spectra. Optimization 21 of population conditions for NIS measurements is discussed and new NIS experiments on 22 SII are proposed
    corecore