2,453 research outputs found

    Stroke: epidemiology and outcomes

    Get PDF
    Objective: To determine the frequency of mortality, length of stay and nosocomial pneumonia outcomes, as well as their distribution according to predictor variables, in stroke patients treated at the emergency room of a tertiary hospital. Methods: A retrospective cohort study, with a sample of patients attended between January 1 and December 31, 2018. Based on the data collected in the medical records, the sample was characterized. Therefore, the frequency of each outcome was checked, as well as its distribution according to the predictor variables. Results: The sample population consisted of 210 patients. The frequencies observed in death and nosocomial pneumonia were 17.6% and 17.1%, respectively. The general mean length of stay was 13.8 ±12.9 days. Statistically significant differences were observed both in the occurrence of nosocomial pneumonia and atrial fibrillation (AF); days of hospitalization in intensive care unit; total days of hospitalization; orotracheal intubation; use of nasoenteral tube and surgical procedure secondary to stroke. Morever, there was also the relation of total time of hospitalization regarding dyslipidemia; orotracheal intubation; use of nasoenteral tube and surgical procedure secondary to stroke. Conclusion: The results found in the frequency of mortality, nosocomial pneumonia and mean total number of days of hospitalization are comparable with other Brazilian studies. However, it is possible to optimize the time of care provided for patients who arrive in the emergency room. In addition, the decrease of hospitalization days in dyslipidemic patients and the increase of nosocomial pneumonia in AF patients require further studies to verify such findings

    Physical Aspects of Axonemal Beating and Swimming

    Full text link
    We discuss a two-dimensional model for the dynamics of axonemal deformations driven by internally generated forces of molecular motors. Our model consists of an elastic filament pair connected by active elements. We derive the dynamic equations for this system in presence of internal forces. In the limit of small deformations, a perturbative approach allows us to calculate filament shapes and the tension profile. We demonstrate that periodic filament motion can be generated via a self-organization of elastic filaments and molecular motors. Oscillatory motion and the propagation of bending waves can occur for an initially non-moving state via an instability termed Hopf bifurcation. Close to this instability, the behavior of the system is shown to be independent of microscopic details of the axoneme and the force-generating mechanism. The oscillation frequency however does depend on properties of the molecular motors. We calculate the oscillation frequency at the bifurcation point and show that a large frequency range is accessible by varying the axonemal length between 1 and 50μ\mum. We calculate the velocity of swimming of a flagellum and discuss the effects of boundary conditions and externally applied forces on the axonemal oscillations.Comment: 14 pages, 8 figures, REVTE

    Nonlinear instability in flagellar dynamics: a notel modulation mechanism in sperm migration

    Get PDF
    Throughout biology, cells and organisms use flagella and cilia to propel fluid and achieve motility. The beating of these organelles, and the corresponding ability to sense, respond to and modulate this beat is central to many processes in health and disease. While the mechanics of flagellum–fluid interaction has been the subject of extensive mathematical studies, these models have been restricted to being geometrically linear or weakly nonlinear, despite the high curvatures observed physiologically. We study the effect of geometrical nonlinearity, focusing on the spermatozoon flagellum. For a wide range of physiologically relevant parameters, the nonlinear model predicts that flagellar compression by the internal forces initiates an effective buckling behaviour, leading to a symmetry-breaking bifurcation that causes profound and complicated changes in the waveform and swimming trajectory, as well as the breakdown of the linear theory. The emergent waveform also induces curved swimming in an otherwise symmetric system, with the swimming trajectory being sensitive to head shape—no signalling or asymmetric forces are required. We conclude that nonlinear models are essential in understanding the flagellar waveform in migratory human sperm; these models will also be invaluable in understanding motile flagella and cilia in other systems

    Potts-Percolation-Gauss Model of a Solid

    Full text link
    We study a statistical mechanics model of a solid. Neighboring atoms are connected by Hookian springs. If the energy is larger than a threshold the "spring" is more likely to fail, while if the energy is lower than the threshold the spring is more likely to be alive. The phase diagram and thermodynamic quantities, such as free energy, numbers of bonds and clusters, and their fluctuations, are determined using renormalization-group and Monte-Carlo techniques.Comment: 10 pages, 12 figure

    Self-organized Beating and Swimming of Internally Driven Filaments

    Full text link
    We study a simple two-dimensional model for motion of an elastic filament subject to internally generated stresses and show that wave-like propagating shapes which can propel the filament can be induced by a self-organized mechanism via a dynamic instability. The resulting patterns of motion do not depend on the microscopic mechanism of the instability but only of the filament rigidity and hydrodynamic friction. Our results suggest that simplified systems, consisting only of molecular motors and filaments could be able to show beating motion and self-propulsion.Comment: 8 pages, 2 figures, REVTe

    Immersed nano-sized Al dispersoids in an Al matrix; effects on the structural and mechanical properties by Molecular Dynamics simulations

    Full text link
    We used molecular dynamics simulations based on a potential model in analogy to the Tight Binding scheme in the Second Moment Approximation to simulate the effects of aluminum icosahedral grains (dispersoids) on the structure and the mechanical properties of an aluminum matrix. First we validated our model by calculating several thermodynamic properties referring to the bulk Al case and we found good agreement with available experimental and theoretical data. Afterwards, we simulated Al systems containing Al clusters of various sizes. We found that the structure of the Al matrix is affected by the presence of the dispersoids resulting in well ordered domains of different symmetries that were identified using suitable Voronoi analysis. In addition, we found that the increase of the grain size has negative effect on the mechanical properties of the nanocomposite as manifested by the lowering of the calculated bulk moduli. The obtained results are in line with available experimental data.Comment: 15 pages, 8 figures. Submitted to J. Phys: Condens. Matte

    Universities and community-based research in developing countries: community voice and educational provision in rural Tanzania

    Get PDF
    The main focus of recent research on the community engagement role of universities has been in developed countries, generally in towns and cities and usually conducted from the perspectives of universities rather than the communities with which they engage. The purpose of this paper is to investigate the community engagement role of universities in the rural areas of developing countries, and its potential for strengthening the voice of rural communities. The particular focus is on the provision of primary and secondary education. The paper is based on the assumption that in order for community members to have both the capacity and the confidence to engage in political discourse for improving educational capacity and quality, they need the opportunity to become involved and well-versed in the options available, beyond their own experience. Particular attention is given in the paper to community-based research (CBR). CBR is explored from the perspectives of community members and local leaders in the government-community partnerships which have responsibility for the provision of primary and secondary education in rural Tanzania. The historical and policy background of the partnerships, together with findings from two case studies, provide the context for the paper

    Invariants in the Yukawa system’s thermodynamic phase diagram

    Get PDF
    This paper shows that several known properties of the Yukawa system can be derived from the isomorph theory, which applies to any system that has strong correlations between its virial and potential-energy equilibrium fluctuations. Such "Roskilde-simple" systems have a simplified thermodynamic phase diagram deriving from the fact that they have curves (isomorphs) along which structure and dynamics in reduced units are invariant to a good approximation. We show that the Yukawa system has strong virial potential-energy correlations and identify its isomorphs by two different methods. One method, the so-called direct isomorph check, identifies isomorphs numerically from jumps of relatively small density changes (here 10%). The second method identifies isomorphs analytically from the pair potential. The curves obtained by the two methods are close to each other; these curves are confirmed to be isomorphs by demonstrating the invariance of the radial distribution function, the static structure factor, the mean-square displacement as a function of time, and the incoherent intermediate scattering function. Since the melting line is predicted to be an isomorph, the theory provides a derivation of a known approximate analytical expression for this line in the temperature-density phase diagram. The paper's results give the first demonstration that the isomorph theory can be applied to systems like dense colloidal suspensions and strongly coupled dusty plasmas.Comment: 12 pages, 12 figure

    Does the Constitution Provide More Ballot Access Protection for Presidential Elections Than for U.S. House Elections?

    Get PDF
    Both the U.S. Constitution and The Federalist Papers suggest that voters ought to have more freedom to vote for the candidate of their choice for the U.S. House of Representatives than they do for the President or the U.S. Senate. Yet, strangely, for the last thirty-three years, the U.S. Supreme Court and lower courts have ruled that the Constitution gives voters more freedom to vote for the candidate of their choice in presidential elections than in congressional elections. Also, state legislatures, which have been writing ballot access laws since 1888, have passed laws that make it easier for minor-party and independent candidates to get on the ballot for President than for the U.S. House. As a result, voters in virtually every state invariably have far more choices on their general election ballots for the President than they do for the House. This Article argues that the right of a voter to vote for someone other than a Democrat or a Republican for the House is just as important as a voter’s right to do so for President, and that courts should grant more ballot access protection to minor-party and independent candidates for the House
    • …
    corecore