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Invariants in the Yukawa system’s thermodynamic phase diagram

Arno A. Veldhorst,a) Thomas B. Schrøder, and Jeppe C. Dyreb)

DNRF Centre “Glass and Time,” IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260,
DK-4000 Roskilde, Denmark

(Received 25 May 2015; accepted 1 July 2015; published online 17 July 2015)

This paper shows that several known properties of the Yukawa system can be derived from the

isomorph theory, which applies to any system that has strong correlations between its virial and

potential-energy equilibrium fluctuations. Such “Roskilde-simple” systems have a simplified ther-

modynamic phase diagram deriving from the fact that they have curves (isomorphs) along which

structure and dynamics in reduced units are invariant to a good approximation. We show that the

Yukawa system has strong virial potential-energy correlations and identify its isomorphs by two

different methods. One method, the so-called direct isomorph check, identifies isomorphs numeri-

cally from jumps of relatively small density changes (here 10%). The second method identifies iso-

morphs analytically from the pair potential. The curves obtained by the two methods are close to

each other; these curves are confirmed to be isomorphs by demonstrating the invariance of the ra-

dial distribution function, the static structure factor, the mean-square displacement as a function of

time, and the incoherent intermediate scattering function. Since the melting line is predicted to be

an isomorph, the theory provides a derivation of a known approximate analytical expression for

this line in the temperature-density phase diagram. The paper’s results give the first demonstration

that the isomorph theory can be applied to systems like dense colloidal suspensions and strongly

coupled dusty plasmas. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4926822]

I. INTRODUCTION

The Yukawa pair potential has been used to model a

wide variety of different phenomena in physics.1 Named af-

ter Hideki Yukawa who used this potential in his meson

theory,2 Debye and H€uckel3 had, in fact, used it earlier to

describe the interactions between ions in solutions. The

Yukawa pair potential, which is also referred to as the

screened Coulomb potential, has the form

t rð Þ ¼ Q2

r
exp �r=kð Þ : (1)

Here, Q is the particle charge in the Gaussian unit system

and k the so-called screening length. Although Debye-

H€uckel theory was devised for describing the behavior of

dilute ionic solutions, the Yukawa potential has proven use-

ful also in the description of charge carriers that are much

larger than those of the surrounding medium. This is the case

for instance in suspensions of charge-stabilized colloids or in

dusty plasmas, compare, e.g., the DLVO theory4,5 in which

the interaction between the surfaces of two colloids is

described by a potential of the Yukawa form. The colloid

particles are often modeled with a potential that adds a hard-

core repulsion, but the low-temperature part of the phase dia-

gram of this “hard-core” Yukawa potential can be mapped

onto the phase diagram of the Yukawa pair potential.6

Besides electrons and ions, dusty plasmas contain small

solid particles that are charged. In dusty plasmas, the

distance between the solid particles is usually large com-

pared to the size of the particles, and their interaction can

therefore be modeled using the (point) Yukawa potential of

Eq. (1). A more involved potential consisting of a sum of

Yukawa terms is sometimes used to capture phenomena like

plasma production and loss balance.7 The physics of dusty

plasmas is not only of interest for industrial applications

where such plasmas are formed, but also in astrophysics for

the understanding of stellar materials and planet

formation.8,9

In 1986 it was found that colloids in suspension can

form crystal lattices,10 and it was predicted that this should

also be possible in dusty plasmas.11 This created a renewed

interest in the phase diagram of the Yukawa system.12–14 It

was later found in experiments that plasma crystals indeed

do exist.15,16 If q is the number density of particles, in the

field of dusty plasmas the phase diagram is usually presented

in terms of the following two dimensionless parameters:17,18

the screening parameter

j � q�1=3

k
; (2)

and the coupling parameter

C � Q2 q1=3

kBT
: (3)

Physically, the screening parameter is much larger than unity

whenever the screening length is much smaller than the aver-

age interparticle distance—this characterizes the part of the

thermodynamic phase diagram where the exponential damp-

ing term dominates over the Coulomb term. In the other

limit, j� 1, the exponential damping term plays little role
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and the system behaves as a single-component repulsive

Coulomb system, the so-called one-component plasma

(OCP), which has an ill-defined thermodynamic limit due to

the infinite screening length. The case C� 1 corresponds to

the potential energy from the individual pair interactions

being much larger than the thermal energy; this favors crys-

tallization, depending on the value of j, see below. In the

opposite limit, C� 1, the system approaches an ideal gas.

Care must be taken when comparing j or C values in the

literature, because they often include in their definition

further multiplicative constants. For instance, in the above

definitions of the screening and coupling parameters, the

term q�1=3 is often replaced by the Wigner-Seitz radius

a ¼ ½3=ð4pqÞ�1=3
.

The Yukawa system’s phase diagram is well understood

with its two solid phases and a fluid phase.11–14 At high j, the

Yukawa fluid crystallizes into a face-centered cubic (FCC) lat-

tice, while at low j, it crystallizes into a body-centered cubic

(BCC) lattice. The triple point separating fluid, FCC, and

BCC phases is located at j ffi 6:90;C ffi 3:47� 103.19

Vaulina and Khrapak20,21 derived an expression for the melt-

ing line from the pair potential using the Lindemann melting

criterion.22,23 This expression is confirmed below, where it is

derived from the isomorph theory. This theory applies to the

class of systems (dense liquids and classical crystals) termed

Roskilde-simple—or just Roskilde (R)—systems.24,25 As

documented below, the Yukawa system exhibits the strong

correlations between equilibrium virial and potential-energy

fluctuations required for a system to belong this class.

Over the years, investigations of the dynamics of the

Yukawa system have mostly focused on the self-diffusion

coefficient and the viscosity.12,17,26–33 In the present publica-

tion, we derive some of the previously reported scaling prop-

erties of the Yukawa system’s transport coefficients from the

general isomorph theory.

The isomorph theory initiated from the observation that

some model liquids have strongly correlated fluctuations of

their energy and pressure.34 More precisely, the correlations

are between the configurational parts of these quantities. If

one for a system of N particles splits energy and pressure

into ideal-gas terms, which depend only on the particle

momenta, and configurational terms depending only on the

particle positions as follows:

E ¼ Kðp1;…; pNÞ þ Uðr1;…; rNÞ ; (4)

pV ¼ NkBTðp1;…; pNÞ þWðr1;…; rNÞ ; (5)

strong correlations between the potential energy U and virial

W constant-volume thermal-equilibrium fluctuations are

found for a number of systems.35 An illustration of such

strong virial potential-energy correlations is shown in Fig. 1

that plots the instantaneous values of W versus those of U
during an NVT equilibrium simulation of the Yukawa sys-

tem. The correlations are quantified by the standard Pearson

correlation coefficient36

R ¼ hDWDUiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h DWð Þ2ih DUð Þ2i

q : (6)

As Fig. 1 shows, R is high for the Yukawa system. A system

is generally considered to have strong U, W correlation

whenever R> 0.9,36 a convenient but also somewhat arbi-

trary criterion.

Many model systems have been shown to exhibit strong

U, W correlations,36–38 including the Lennard-Jones (LJ) sys-

tem and other simple liquids, molecular liquid models,39,40

liquids under shear,41 and crystals.42 These systems were ini-

tially called “strongly correlating,” but that repeatedly led to

confusion with strongly correlated quantum systems, and

they are now instead referred to as Roskilde-simple or just

Roskilde (R) systems.43–50 The isomorph theory has also

been applied to nano-confined liquids51,52 and, e.g., to derive

density-scaling invariants for zero-temperature plastic flow

properties of glasses.53

In 2009 it was found that R liquids have “isomorphic”

curves in their thermodynamic phase diagram.54 Isomorphs

are curves along which all properties derived from structure

or dynamics are invariant in properly reduced units, making

the phase diagram effectively one dimensional with respect

to many properties.54 An example of this is shown in Fig. 2,

FIG. 1. Scatter plot (symbols) demonstrating strong correlations between

the instantaneous values of the virial W and the potential energy U during an

equilibrium NVT simulation of the Yukawa system at q ¼ 3� 10�3 and T ¼
5:3608� 10�5 (j ¼ 6:934 and C¼ 2690). The dashed line is the standard

linear regression with slope c.

FIG. 2. The radial distribution function (left) and the mean square displace-

ment (right) in reduced units for four different state points, two of which are

isomorphic to each other. The initial state point (black line) has

q1 ¼ 3� 10�3;T1 ¼ 5:361� 10�5, while the isomorphic state point (dashed,

red line) has q2 ¼ 3:3� 10�3; T2 ¼ 6:553� 10�5. The method used to iden-

tify the state point (q2;T2) as being isomorphic to state point (q1;T1) is given

below in Sec. IV A. The two isomorphic state points are seen to have identical

structure and dynamics to a very good approximation. The effects of either

changing density or temperature separately (green and blue dashed lines) are

shown for comparison. The insets show enlarged views of the same data.
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where the Yukawa fluid is shown to have—to a very good

approximation—identical radial distribution functions (g(r))

and mean square displacements at two state points that are

isomorphic to each other.

Having its origins in the field of organic, glass-forming

liquids, the isomorph theory has been applied to explain cer-

tain empirical scalings in that field. These include the so-

called density scaling, according to which the dynamics is a

function of qc=T.55 This is an approximation to the isomorph

theory that applies when fairly small changes in density are

considered, as in most experiments.54,56 Because both the

excess entropy, Sex � S� Sideal (Sideal being the entropy of

the ideal gas at same temperature and density), and the

reduced-unit dynamics are invariant along isomorphs, the

isomorph theory also predicts that R liquids obey

Rosenfeld’s excess entropy scaling, which states that the

reduced transport coefficients are functions of Sex.
57 Not pre-

dicted by the isomorph theory, but nevertheless found to

apply to R liquids,58 is the Rosenfeld-Tarazona relation59

that gives expressions for the constant-density temperature

dependence of the isochoric specific heat (cV / T�2=5). For a

more comprehensive overview of the isomorph theory, the

reader is referred to a recently published Feature article.25

The fact that the Yukawa system has strong UW correla-

tions shows that it belongs to the class of R liquids. This is

consistent with the long-known facts that the Yukawa sys-

tem28,60 and the OCP61 obey excess entropy scaling as well

as the above-mentioned Rosenfeld-Tarazona relation for the

specific heat’s temperature dependence.59 The implication is

that the isomorph theory applies also to systems that are not

conventional liquids, such as colloidal suspensions and dusty

plasmas. In fact, the findings presented below confirm a

recently derived theory of quasiuniversality according to

which the Yukawa system is in the so-called EXP quasiuni-

versality class of simple, monatomic, pair-potential systems,

a class that includes also, e.g., the inverse-power-law (IPL)

and Lennard-Jones systems.62

In the following, we first give a short overview of the

isomorph theory and the computer simulation procedures

used in the paper (Secs. II and III). We proceed to show how

to construct isomorphs using two different methods in Sec.

IV. Sec. V shows that the isomorphs generated by these

methods are very close to one another and confirms the pre-

dicted isomorph invariance of structure and dynamics.

Finally, Sec. VI gives a brief discussion.

II. ISOMORPHS: A BRIEF REVIEW

The isomorph theory uses so-called reduced units in

which quantities are made dimensionless via units based on

the thermodynamic quantities density and temperature, not the

length and energy of the microscopic potential that are often

used when reporting simulation results. Thus, one uses the

unit l0 � q�1=3 for length, e0 � kBT for energy, and t0 �
q�1=3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
for time with m being the particle mass (for

Brownian dynamics a different time unit is used).54 For

instance, the collective position of the system’s particles,

R � ðr1;…; rNÞ, is expressed in reduced units as

~R � q1=3R ; (7)

where the tilde here and henceforth denotes a reduced

quantity.

The isomorph theory is conveniently summarized in the

expression25

UðRÞ ffi hðqÞ~Uð~RÞ þ gðqÞ: (8)

Here, ~U is a dimensionless, state-point independent function

of the reduced configurations ~R; the term ~Uð~RÞ controls the

structure and dynamics in reduced units, and notably, it con-

tains no length or energy scales. The functions hðqÞ and gðqÞ
both have units of energy. The physics of Eq. (8) is that upon

changing the density of a system, the potential-energy sur-

face to a good approximation merely undergoes a linear,

affine rescaling. We proceed to show how Eq. (8) is used to

derive the most important properties of R systems, their

strong virial energy correlations, and the existence of iso-

morphs. Before doing so, we note that the isomorph theory

was recently generalized by defining a Roskilde-simple sys-

tem by the property that the order of potential energies is

maintained for uniform scaling of configurations, i.e., by the

condition UðRaÞ < UðRbÞ ) UðkRaÞ < UðkRbÞ.63 This

leads to slightly modified predictions, but overall, the new

isomorph theory is close to the original, which is the one

used below.

The microscopic virial of Eq. (5) is defined by64

W Rð Þ � � 1

3
R 	 rU Rð Þ: (9)

It is easy to show that WðRÞ characterizes the change of

potential energy for a uniform scaling of space (i.e., leaving
~R intact) as follows:65

W Rð Þ ¼ @U Rð Þ
@ ln q

 !
~R

: (10)

Combining this with Eq. (8) and eliminating ~Uð~RÞ, one finds

that

WðRÞ ffi cðqÞUðRÞ þ /ðqÞ : (11)

Here,

c qð Þ �
d ln h qð Þ

d ln q
; (12)

and /ðqÞ ¼ dgðqÞ= d ln q� gðqÞcðqÞ. From Eq. (11) it fol-

lows that at constant density, the fluctuations in W and U are

correlated with linear-regression slope c given by

c � hDWDUi
h DUð Þ2i

: (13)

As shown in Fig. 1(a) the Yukawa system indeed has strong

WU correlations (with slope c ¼ 2:14 at the state point stud-

ied here).

We proceed to show that Eq. (8) implies the existence of

isomorphs. First, these curves in the thermodynamic phase
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diagram need to be defined. Consider two densities, q1 and

q2, and two configuration R1 and R2 at these densities,

respectively, with the same reduced coordinates, i.e., q1=3
1 R1

¼ q1=3
2 R2 � ~R. Applying Eq. (8) to UðR1Þ and UðR2Þ and

eliminating the common factor ~Uð~RÞ, we find

½UðR1Þ � gðq1Þ�=hðq1Þ ¼ ½UðR2Þ � gðq2Þ�=hðq2Þ. Define

now two temperatures by kBT1 � Khðq1Þ and kBT2 � Khðq2Þ
with the same proportionality constant K. This gives

U R1ð Þ
kBT1

ffi U R2ð Þ
kBT2

þ B12 ; (14)

where the constant B12 depends only the two state points, not

on the configurations. This can be rewritten as

exp �U R1ð Þ
kBT1

� �
ffi C12 exp �U R2ð Þ

kBT2

� �
: (15)

This equation implies identical canonical probabilities of

configurations with the same reduced coordinates. When this

is obeyed to a good approximation for most of the physically

relevant configurations, the two state points ðq1; T1Þ and

ðq2; T2Þ are by definition isomorphic to one another.54 This

defines a mathematical equivalence relation in the thermody-

namic phase diagram, and an isomorph is then defined as a

curve along which all pairs of state points are isomorphic.

From the isomorph definition Eq. (15), it follows that

many properties of the system are invariant between isomor-

phic state points.54 Isomorph invariants include thermody-

namic quantities such as the excess entropy and the isochoric

specific heat, as well as the reduced-unit dynamics and struc-

ture. Not all quantities are invariant even in reduced units,

for instance, the free energy and its volume derivatives like

pressure or compressibility are not.

Because the temperature is proportional to hðqÞ along

an isomorph with the same proportionality constant, iso-

morphs are described by

h qð Þ
T
¼ Const: (16)

Since, moreover, the excess entropy per particle sex is con-

stant on an isomorph (because the Boltzmann probabilities

of scaled configurations are), the temperature of an R system,

i.e., one with isomorphs, separates as follows66

kBT ¼ f ðsexÞhðqÞ : (17)

It can be shown that this separation property is mathemati-

cally equivalent to the thermal average of Eq. (11), which

is the configurational Gr€uneisen equation of state

W ffi cðqÞU þ /ðqÞ.66

The isomorph theory is approximate for all realistic sys-

tems. In fact, Eqs. (8) and (15) are only exact for systems

that have an Euler-homogeneous potential-energy function.

The most important example of such systems are those with

an IPL pair potential (tðrÞ / r�n). IPL systems are easily

shown to be characterized by hðqÞ / qc, and it follows from

Eq. (9) that c is related to the exponent n of the IPL pair

potential by

c ¼ n

3
: (18)

The applicability of the isomorph theory for simple atomic

systems may be understood physically from the fact that, in

the region of the first peak of the radial distribution function,

the interatomic potential is well fitted by an IPL term plus a

linear term, the so-called extended IPL (eIPL) pair poten-

tial.67 This provides an intuitive explanation why many non-

IPL liquids obey the isomorph theory. Notably, the linear

term contributes little to the fluctuations in the energy or the

virial. The reason for this is that when a particle moves,

interparticle distance decrease on one side while increasing

on the other side. The sum of the interparticle distances stays

approximately the same.67

III. SIMULATION PROCEDURE

Our simulations used the “Roskilde University

Molecular Dynamics” (RUMD) code, which is optimized for

GPU computing.68 All simulations were performed in the

NVT ensemble with a standard Nos�e-Hoover thermostat. A

state point is characterized by two parameters: the density q,

reported below in the unit system defined by the screening

length k of Eq. (1), and the temperature T, reported in the

unit system defined by the unit Q2=ðkkBÞ. Equivalently, a

state point may be characterized by the two dimensionless

numbers: the screening parameter j of Eq. (2) and the cou-

pling parameter C of Eq. (3). For maximum clarity, the simu-

lation results are presented both in terms of q and T, and in

terms of j and C. In practice, the simulations were per-

formed directly in reduced units, i.e., density and tempera-

ture were set equal to unity, changing instead the length and

energy parameters of the potential in order to investigate dif-

ferent state points in the thermodynamic phase diagram.

In reduced units the integration time step D~t was

decreased at low screening lengths (j� 1) because the

potential here becomes very steep. We used a shifted-force

cutoff69 for the potential, with a (reduced) cutoff rcut that

varied with the state point because longer cutoffs are needed

at low j values. Wherever necessary, we increased the num-

ber of particles N to allow for larger cutoffs. It should be

noted that this cutoff method does not yield accurate values

of the potential energy, especially at high densities close to

the OCP limit. Accurate calculation of the potential energy

of the OCP has been discussed elsewhere,70–72 and is beyond

the scope of this investigation. Table I summarizes the simu-

lation parameters used.

TABLE I. The parameters used in the simulations. Depending on the density

q, the number of particles in the system N was changed to allow for a larger

reduced cutoff radius ~rcut. The reduced time step D~t was decreased at the

lowest densities.

N ~rcut D~t

q < 0:01 2048 4.3 0.0010 5 < j
0:01 
 q < 0:5 2048 5.2 0.0025 1:5 < j < 5

0:5 
 q 8192 10.0 0.0025 j < 1:5
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IV. TWO METHODS FOR IDENTIFYING THE
ISOMORPHS

This section details two methods for mapping out an iso-

morph in the thermodynamic phase diagram. The first one is

numerical; it is accurate for small density variations, but not

well suited for studies involving large density variation.

Here, a recently proposed approximate analytical method is

more handy. This method estimates the isomorph from the

pair potential by using Eq. (16) in conjunction with an ana-

lytical expression for hðqÞ. This has been shown to work

well for the Lennard-Jones system and two systems with pair

potentials that are sums of two, respectively, three, IPL

terms.73

A. The direct isomorph check: A numerical method

Equation (14) can be rewritten as

U R2ð Þ ffi T2

T1

U R1ð Þ þ D12 : (19)

This shows that the potential energies of configurations at

density q1 and the same ones scaled to density q2 are pre-

dicted to be linearly related. If the configurations are taken

from an equilibrium simulation at state point ðq1; T1Þ, the

slope is the ratio T2=T1, where T2 is the temperature for

which state point ðq2; T2Þ is isomorphic to state point

ðq1; T1Þ. This can be used to find state points that are isomor-

phic to each other. The procedure is termed the direct iso-

morph check because it is based directly on the isomorph

definition Eq. (15).54

The direct-isomorph-check procedure is illustrated in

Fig. 3. Here, a number of configurations R1 with potential

energy denoted by U1 were sampled from an equilibrium

simulation of the Yukawa fluid at density q1. Each configura-

tion was then scaled to the higher density q2 ¼ 1:1� q1, at

which the new potential energy U2 was calculated. The fig-

ure shows that the potential energies U1 and U2 are highly

correlated. The standard linear-regression slope is 1.2224.

According to Eq. (19), this number is the ratio T2=T1, which

allows for determining T2 such that the state point ðq2; T2Þ is

isomorphic to ðq1; T1Þ. We see that along the isomorph

through ðq1; T1Þ, a density increase of 10% implies a 22.2%

increase in temperature.

The structure and dynamics of the two isomorphic state

points are shown to be the same in Fig. 2, demonstrating that

the direct isomorph check works well for density changes of

10%. However, it should be noted that the change in density

cannot be huge, because the isomorph theory is only approxi-

mate (except for IPL systems), which implies that direct-iso-

morph-check plots give relatively poor correlations for large

density jumps. To avoid this problem, we always used, in

this work, a density change of merely 10% for direct iso-

morph checks, corresponding to changing j by less than 4%.

In the simulations presented in Section V, we used the direct

isomorph check to create an isomorph by doing a simulation

at the initial state point ðq; TÞ ¼ ð10�3; 3� 10�6Þ, scaling

configurations to a new density, and finding the temperature

of the new isomorphic state point. This was repeated at the

new state point to obtain a third one, etc. In this way, we

obtained altogether a set of 32 prospective isomorphic state

points in the range 3� 10�4 
 q 
 3:6� 10�3

(6:5 
 j 
 14:9). These state points are referred to here as

“prospective” because they will be compared to other sets of

prospective isomorphic state points generated in a different

way.

B. Predicting the isomorph analytically from the pair
potential

In this section, we aim to construct an isomorph by

obtaining an expression for the function hðqÞ of Eq. (8). For

pair potentials that are a sum of IPLs, hðqÞ can be deter-

mined from a single simulation at a reference state point.56,66

For other potentials such as the Yukawa, this is not possible.

Nevertheless, Bøhling et al.73 have recently shown that hðqÞ
can be estimated from the potential. We briefly review these

findings before applying this method to the Yukawa

potential.

As mentioned earlier, for an IPL pair potential / r�n, it

is known that c ¼ n=3 (Eq. (18)). For other potentials, an

effective r-dependent IPL exponent can be estimated using

ratios of derivatives of the potential67 as follows:

n pð Þ rð Þ � �r
t pþ1ð Þ rð Þ
t pð Þ rð Þ

� p ; (20)

where tðpÞ denotes the pth derivative of the potential. For an

IPL pair potential, nðpÞðrÞ is constant and gives the correct

exponent for all p. For other potentials the effective exponent

depends on both p and r, meaning that the “softness” of the

particles depends on the separation between the particles.

We show this in Fig. 4 for the Yukawa potential. It is known

that in the OCP limit, the potential reduces to a Coulomb

interaction, for which n¼ 1. This corresponds to small inter-

particle distances and we see indeed that in the limit of

r ! 0, one finds nðpÞðrÞ ! 1 for every p.

FIG. 3. The Yukawa system simulated at q1 ¼ 3� 10�3 (j ¼ 6:93) and

T1 ¼ 5:361� 10�5 (C¼ 2690). The potential energies U1 � UðR1Þ of con-

figurations were plotted versus the potential energies U2 � UðR2Þ of the

same configurations scaled to a 10% higher density denoted q2 (symbols).

The two energies are highly correlated, indicating that the Yukawa system

obeys the isomorph definition (Eq. (14)). By simple linear regression

(dashed line), we find the slope T2=T1 (see Eq. (19)), which means that for

the state point at q1 to be isomorphic to the one at q2, the temperature of the

latter should be T2 ¼ 1:2224� T1 ¼ 6:553� 10�5 (C¼ 2272).
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Recall that potentials that obey the isomorph theory

have been found to be well fitted by an extended IPL poten-

tial, i.e., an IPL potential plus a linear term.67 An obvious

choice for p is thus 2, since this would ignore the linear con-

tribution to the extended IPL potential

n 2ð Þ rð Þ � �r
t000 rð Þ
t00 rð Þ � 2 : (21)

The next question is: At which distance to evaluate nð2ÞðrÞ?
Since the physics of R liquids has been shown to be governed

by the interactions in the first coordination shell,24 the nearest

neighbor distance is an obvious choice. Since any distance

scales with density as r / q�1=3, we can write the nearest-

neighbor distance as Kq�1=3, where K is a number close to

unity. By combining Eq. (21) and Eq. (18), one finds73

c qð Þ ¼
n 2ð Þ rð Þ

3

����
r¼Kq�1=3

: (22)

As noted by Bøhling et al.,73 K is not expected to be the

same for all state points. However, because structure in

reduced units is predicted to be invariant along an isomorph,

K must be an isomorph invariant. By comparing with simula-

tion results of different pair potentials, they indeed find that

cðqÞ does not predict the density-scaling exponent equally

well for different isomorphs if K is isomorph independent,

although the prediction is qualitatively correct. Instead, an

isomorph dependent (and thus excess entropy dependent)

nearest-neighbor distance KðsexÞq�1=3 was able to estimate

the isomorph more precisely, giving73

c q; sexð Þ ¼
n 2ð Þ rð Þ

3

����
r¼K sexð Þq�1=3

: (23)

It is possible to rewrite Eq. (21) as

nð2ÞðrÞ � d ln½r2t00ðrÞ�= d ln r. This can be combined with

Eq. (12) to find73

hðq; sexÞ ¼ Ar2t00ðrÞjr¼KðsexÞq�1=3 ; (24)

where A is an arbitrary constant. This can now be used to

find an isomorph in the phase diagram using the facts that

hðq; sexÞ=T ¼ Const: (Eq. (16)) and that sex is an isomorph

invariant.

Applying this method to the Yukawa potential, we find

using Eq. (24) after straightforward calculations

hðq; sexÞ ¼ A exp�Kq�1=3 ½Kq�1=3 þ 2þ 2K�1q1=3� : (25)

If we express hðq; sexÞ in terms of the Yukawa parameters j
and C, we find

C ¼ C0

2eKj

Kjð Þ2 þ 2Kjþ 2
; (26)

where C0 ¼ K=ð2AÞ is the value of C in the OCP limit

(j¼ 0). Vaulina and Khrapak.20 found that a curve of this

shape with K¼ 1 and C0 ¼ 106:6 gives a good description

of the melting line as found by Hamaguchi et al.,19 and also

of the melting line of dissipative Yukawa systems.21 Their

findings are fully consistent with the isomorph theory and

now placed in a more general setting: The melting line is

predicted to be an isomorph54 since if an isomorph were to

cross the melting line, this would mean Eq. (15) should be

obeyed for a pair of liquid and solid state points. This cannot

be the case, because the relative Boltzmann probabilities for

liquid and solid configurations are clearly different at these

two state points. Vaulina and Khrapak used Lindemann’s

melting criterion, which states that melting happens when

the root mean square displacement is 10% of the crystal’s

nearest neighbor distance.23 Since both structure and dynam-

ics are invariant on the isomorph, they should also be so at

the melting line. Lindemann’s melting criterion is thus con-

sistent with the isomorph theory.54 It should also be noted

that Yazdi et al.18 recently showed that Eq. (26) with C0 ¼
368 and K¼ 1 gives a good description of the ideal glass

transition of mode-coupling theory; apparently, this line is

an isomorph, which makes sense since isomorphs are lines

of identical physics (in reduced units). A consequence of the

melting line being an isomorph is also that the temperature T
on an isomorph scaled by the melting temperature Tm is an

isomorph invariant if isomorphs have the same shape (i.e.,

their shape is given by hðqÞ instead of hðq; sexÞÞ. Thus, so-

called melting temperature scaling methods which have

found that dynamic and/or thermodynamic properties of the

Yukawa system28,29,75,76 and the OCP28,29,77 are functions

only of T=Tm are saying that these properties are isomorph

invariants.

In addition to the direct isomorph check described in

Section IV A, we used Eq. (25) to obtain two sets of prospec-

tive isomorphic state points. For this, it is necessary to know

the relevant reduced interparticle distance K. Because

Vaulina and Khrapak20 found Eq. (26) with K¼ 1 to be a

good description of the melting line and the melting line is

an isomorph, we test if Eq. (25) with K¼ 1 is the correct

description of an isomorph. The prospective isomorph with

K¼ 1 that we have tested is characterized by A ¼
6:347� 10�3 (C0 ¼ 78:78).

We also tried to calculate a more accurate value of K.

Previously, Bøhling et al.73 used the most probable nearest

neighbor distance for K, which they determined from the

position of the first peak in r2gðrÞ, with g(r) being the radial

distribution function. They found for the potentials they

tested at different state points that 0:975 
 K 
 1:065.

Below we use the different method to determine K from the

U, W fluctuations published earlier by Bailey et al.74 First,

FIG. 4. Estimates of the effective IPL exponent nðpÞðrÞ for the Yukawa

potential using Eq. (20).
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we derive the expression for cðq; sexÞ ¼ @ ln hðq; sexÞ=@ ln q
(Eq. (12)) for the Yukawa potential using Eq. (25):

c q; sexð Þ ¼
K3

3K2q1=3 þ 6Kq2=3 þ q
þ 1

3
: (27)

We did a simulation at an initial state point (q ¼ 0:005 and

T¼ 0.00015). At this state point, c was found from the fluc-

tuations to be 1.78 using Eq. (13). From Eq. (27) it then fol-

lows that K ¼ 1:03 is the relevant reduced nearest-neighbor

distance at that state point. The third prospective isomorph is

thus identified by Eq. (25) with K ¼ 1:03 and A ¼
7:414� 10�3 (C0 ¼ 69:46) to obtain a set of state points

with the same densities as the points generated for the K¼ 1

prospective isomorph.

V. COMPARING THE THREE PROSPECTIVE
ISOMORPHS

This section compares the three sets of prospective iso-

morphic state points generated as described in the section

IV. The three isomorphs are shown in Fig. 5 plotted both in

the q; T and the j;C plane. The isomorphs are parallel to the

melting line20 and the ideal glass transition line from mode

coupling theory.18 The three prospective isomorphs are

slightly different, but overall close to one another. It is there-

fore not surprising that they have similar invariance proper-

ties. The remainder of this section focuses on illuminating

the minor differences.

Figures 6(a) and 6(b) verify that the strong correlations

between the virial and the potential-energy NVT equilibrium

fluctuations are present over the entire range of densities

studied. Whereas models of conventional liquids are usually

not strongly correlating at low densities and temperatures due

to the large contribution of the attractive term in the potential,

the Yukawa system is in fact strongly correlating with correla-

tion coefficient R> 0.99 (Eq. (6)) at all tested state points.

The values R> 0.99 are very high, especially when compared

to those of other models that, as mentioned, are considered

Roskilde liquids if they obey R> 0.90.36,37,39,67 Recently, the

ten-bead rigid-bond flexible Lennard-Jones chain was even

demonstrated to have excellent isomorphs despite having

R � 0:86.40

Figures 6(c) and 6(d) show the density-scaling coeffi-

cient c calculated using Eq. (13). In the OCP limit, we find

that c goes to 1/3 as expected for an IPL with n¼ 1. At lower

densities, the behavior of c is influenced by the exponential

term, for which the estimated cðqÞ has also been shown for

comparison (dotted lines). Due to the increase in the steep-

ness of the potential, c increases from 1/3 to 5 in the density

range shown. The lowest correlation coefficient is found in

the crossover region of densities marking the region where

the effects of both the exponential and Coulomb terms are

important.

There is a slight difference between the values of c cal-

culated from the fluctuations and those predicted for cðq; sexÞ
from Eq. (27) with K¼ 1 (black dashed line). To investigate

this further, we plot in Fig. 7 the relative difference between

the two estimated functions cðq; sexÞ for K¼ 1 and K ¼ 1:03

and the values of c calculated from the fluctuations. Both

predictions are too low at high density (small j).

Unsurprisingly, the prediction with K ¼ 1:03, a number that

was identified using the value of c from the energy and virial

fluctuations at a reference state point with q ¼ 0:005

(j ¼ 5:85), is more accurate at low densities (large j).

We proceed to check to which degree the three sets of

prospective isomorphic state points exhibit the invariance of

dynamics and structure predicted for isomorphs. We test the

FIG. 5. Prospective isomorphs in the (a) q; T phase diagram and the (b) j;C
phase diagram generated in the three different ways described in Sec. IV.

Comparing the two estimates of hðqÞ from the pair potential, there is a visi-

ble difference in the slope at low density (high j). The isomorphs are paral-

lel to the expressions of the melting line20 and the ideal MCT glass

transition18 (dashed lines), showing that these lines are both isomorphs. This

is what one expects from the fact that the physics is invariant along the iso-

morphs. Sets of isothermal and iso-C state points have also been included in

the figure because these are used later in this section.

FIG. 6. The virial potential-energy correlation coefficient R (top), and the

so-called density-scaling coefficient c (bottom) plotted versus density (left)

and the screening parameter j (right). Because of the high correlation coeffi-

cient, the Yukawa fluid is Roskilde-simple at all simulated state points. c
varies significantly, reflecting a dramatic change in steepness of the Yukawa

potential with density.
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invariance of the dynamics in Fig. 8 for the isomorph gener-

ated by the direct-isomorph-check method and in Fig. 9 for

the two isomorphs generated from the estimates of hðqÞ. The

figures show the mean-square displacements and the inter-

mediate scattering functions in reduced units. For all three

sets of prospective isomorphic state points, both measures of

the dynamics collapse nicely onto a single curve.

There are only minor differences in how invariant the

dynamics are on the three prospective isomorphs. To amplify

these differences, we calculated the reduced diffusion coeffi-

cient from the mean-square displacement at all investigated

state points. The results are shown in Fig. 10, and compared

with the diffusion coefficient along an isotherm and a curve

of constant C. In view of the large density range simulated,

there is little variation in the diffusion coefficient along the

isomorph. The isomorph obtained with the direct-isomorph-

check method only covers part of the phase diagram because

of the time-consuming nature of obtaining these state points.

The reduced diffusion coefficients are virtually constant over

the range simulated by this method. The results for the iso-

morph estimated from the pair potential with K ¼ 1:03 col-

lapse with those of the isomorph from the direct isomorph

check. Interestingly, the range where the diffusion coeffi-

cients are almost invariant coincides with the range where

agreement between the estimated and the fluctuation c is

best. We also note that although K¼ 1 leads to a worse pre-

diction for c, it gives a more invariant diffusion coefficient

when the whole phase diagram is considered. We attribute

this to some cancellation of errors, rather than reflecting that

K¼ 1 gives a more precise value of the relevant interparticle

distance. Note also that the invariance of the dynamics, and

thus the isomorphs, seems to continue all the way to the

OCP limit. As mentioned earlier, also the melting line is an

isomorph, so our results indicate that also the melting line

continues to the OCP limit, indicating the existence of a

phase transition in the OCP,78 at least from a dynamical

point of view.

We proceed to test the isomorph invariance of structure

as quantified via the radial distribution function gð~rÞ and the

static structure factor Sð~qÞ (both in reduced units). Results

for the prospective isomorphic state points obtained using

the direct isomorph check are shown in Fig. 11; results

for state points of the two estimates of hðqÞ with K¼ 1 and

FIG. 8. (a) The reduced mean-square displacement and (b) the self interme-

diate scattering function plotted as functions of the reduced time on the iso-

morph generated using the direct isomorph check. The dynamics collapse

almost perfectly. The q vector is kept constant in reduced units as q ¼ q1=3 ~q
with ~q ¼ 7.

FIG. 9. (a) and (c) The reduced mean-square displacements; (b) and (d) in-

termediate scattering functions along the two isomorphs obtained from Eq.

(25) for K¼ 1 (top) and K ¼ 1:03 (bottom). Both sets of state points show

almost invariant dynamics, although for K ¼ 1:03, the collapse is slightly

worse than for K¼ 1. The reduced scattering vector was again ~q ¼ 7.

FIG. 10. The reduced diffusion coefficient along the three prospective iso-

morphs, calculated from linear regression of the part of the mean-square dis-

placement above unity. The diffusion coefficients of the state points

obtained with the direct isomorph check are constant in the tested range of

densities. The two estimates from Eq. (26) have been tested in a much larger

range and show a larger deviation from isomorph invariance, especially the

estimate with K ¼ 1:03 at high density. Overall, the dynamics on either of

the three prospective isomorphs are much more invariant, however, than on

the curves of constant temperature or constant C.

FIG. 7. Relative difference between the estimated cðqÞ (Eq. (27)) and c cal-

culated from the equilibrium fluctuations via Eq. (13) (denoted in the figure

by cf). The prediction cðqÞK¼1:03 is generally in best agreement with the

values from the equilibrium fluctuations.
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K ¼ 1:03 are plotted in Fig. 12. Overall, the structure is

invariant on the three prospective isomorphs when compared

to the change in gð~rÞ along the isotherm. This is notable con-

sidering the density on the isotherm changes by a factor of

4.4, while on the isomorphs it changes by a factor of 10 (Fig.

11(a)) and 104 (Fig. 11).

Whereas the 10% density change applied in Fig. 2

resulted in invariance of the structure, the large density

changes applied here (a factor of 10 and 104 respectively) do
lead to systematic changes in the structure along the prospec-

tive isomorph, especially in the region of the first peak of

gð~rÞ. This is not unexpected, because the increase in the

steepness of the potential with decreasing density (see Fig.

6) makes close encounters between particles less probable.

This results in a steeper initial slope of gð~rÞ, and thus, a

higher first peak if the total number of nearest neighbors is

unchanged.73 Taking into account that the direct-isomorph-

check isomorph “only” involves densities variations

covering a single decade, we note that the deviation from

isomorphic invariance is smallest for the state points

obtained using K¼ 1.

Not only the height of the peak but also its position

changes somewhat along the prospective isomorphs. This is

an effect of the large change in the effective steepness of the

potential (i.e., relative to kBT). The Yukawa potential has for

instance both a BCC and an FCC solid phase with the triple

point at j ¼ 6:90.19 These two crystal structures have differ-

ent reduced nearest-neighbor distances, and it is not surpris-

ing that some of these structural differences continue to exist

in the liquid state. The change of the nearest-neighbor dis-

tance with density, however, indicates that a single value for

K may be an approximation.

VI. DISCUSSION

We have shown that the Yukawa system is Roskilde

simple. This was shown from the strong correlations between

equilibrium virial and potential-energy fluctuations and by

the fact that the Yukawa system has isomorphs in its phase

diagram. An isomorph is a curve of constant excess entropy,

but the curve can also be estimated directly from the pair

potential. We have verified that the dynamics are invariant

on the isomorphs as predicted by the theory. The structure of

the fluid as characterized by the radial distribution function

was found to be invariant to a lesser degree, in part because

the position of the first peak shifts slightly. Our estimate of

the isomorph shape from the pair potential uses the nearest-

neighbor distance. Consequently, Eq. (27) with a constant K
cannot give an exact description of the density dependence

of c along an isomorph. In view of the invariant dynamics

shown in Fig. 9(a) and 9(b), however, Eq. (25) with K¼ 1

must be said to give a rather good description of the iso-

morph shape.

In summary, we have shown that the isomorph theory

provides a simple and general framework for understanding

previous findings for the Yukawa system. In particular, our

results explain the previously identified expression of the

melting line of Yukawa systems,20,21 which here follows

from the fact that the melting line is an isomorph.54

Likewise, the isomorph theory12,28,29 explains the observa-

tion that the transport coefficients of the Yukawa fluid col-

lapse when plotted versus temperature scaled by the melting

temperature (compare Eq. (16)), as well as the recently pro-

posed expression for the ideal glass transition line of mode

coupling theory.18 Finally, we point out that the Yukawa sys-

tem belongs to the “exponential” class of quasiuniversal

systems.62
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