176 research outputs found
Thermal radiation of various gravitational backgrounds
We present a simple and general procedure for calculating the thermal
radiation coming from any stationary metric. The physical picture is that the
radiation arises as the quasi--classical tunneling of particles through a
gravitational barrier. We show that our procedure can reproduce the results of
Hawking and Unruh radiation. We also show that under certain kinds of
coordinate transformations the temperature of the thermal radiation will change
in the case of the Schwarzschild black holes. In addition we apply our
procedure to a rotating/orbiting system and show that in this case there is no
radiation, which has experimental implications for the polarization of
particles in circular accelerators.Comment: 6 pages revtex, added references, publication version. To be
published IJMP
Hawking Radiation as Tunneling: the D-dimensional rotating case
The tunneling method for the Hawking radiation is revisited and applied to
the dimensional rotating case. Emphasis is given to covariance of results.
Certain ambiguities afflicting the procedure are resolved.Comment: Talk delivered at the Seventh International Workshop Quantum Field
Theory under the influence of External Conditions, QFEXT'05, september
05,Barcelona, Spain. To appear in Journal of Phys.
Hamilton-Jacobi Method and Gravitation
Studying the behaviour of a quantum field in a classical, curved, spacetime
is an extraordinary task which nobody is able to take on at present time.
Independently by the fact that such problem is not likely to be solved soon,
still we possess the instruments to perform exact predictions in special,
highly symmetric, conditions. Aim of the present contribution is to show how it
is possible to extract quantitative information about a variety of physical
phenomena in very general situations by virtue of the so-called Hamilton-Jacobi
method. In particular, we shall prove the agreement of such semi-classical
method with exact results of quantum field theoretic calculations.Comment: To appear in the proceedings of "Cosmology, the Quantum Vacuum, and
Zeta Functions": A workshop with a celebration of Emilio Elizalde's Sixtieth
birthday, Bellaterra, Barcelona, Spain, 8-10 Mar 201
Profile of Trypanosoma cruzi Infection in a Tropical Medicine Reference Center, Northern Italy
Chagas disease (CD) is endemic in Central and South America, Mexico and even in some areas of the United States. However, cases have been increasingly recorded also in non-endemic countries. The estimated number of infected people in Europe is in a wide range of 14000 to 181000 subjects, mostly resident in Spain, Italy and the United Kingdom
Hawking Radiation as Tunneling for Extremal and Rotating Black Holes
The issue concerning semi-classical methods recently developed in deriving
the conditions for Hawking radiation as tunneling, is revisited and applied
also to rotating black hole solutions as well as to the extremal cases. It is
noticed how the tunneling method fixes the temperature of extremal black hole
to be zero, unlike the Euclidean regularity method that allows an arbitrary
compactification period. A comparison with other approaches is presented.Comment: 17 pages, Latex document, typos corrected, four more references,
improved discussion in section
Hawking Radiation via Tunneling from Hot NUT-Kerr-Newman-Kasuya Spacetime
We study the Hawking thermal spectrum in dragging coordinate system and the
tunneling radiation characteristics of hot NUT-Kerr-Newman-Kasuya spacetime.
The tunneling rates at the event and cosmological horizon are found to be
related to the change of Bekenstein-Hawking entropy. The radiation spectrum is
not pure thermal and thus there is a correction to the Hawking thermal
spectrum.Comment: To appear in Class. Quant. Gra
Fermions tunnelling from the charged dilatonic black holes
Kerner and Mann's recent work shows that, for an uncharged and non-rotating
black hole, its Hawking temperature can be exactly derived by fermions
tunnelling from its horizons. In this paper, our main work is to improve the
analysis to deal with charged fermion tunnelling from the general dilatonic
black holes, specifically including the charged, spherically symmetric
dilatonic black hole, the rotating Einstein-Maxwell-Dilaton-Axion (EMDA) black
hole and the rotating Kaluza-Klein (KK) black hole. As a result, the correct
Hawking temperatures are well recovered by charged fermions tunnelling from
these black holes.Comment: 16 pages, revised version to appear in Class. Quant. Gra
Observer Dependent Horizon Temperatures: a Coordinate-Free Formulation of Hawking Radiation as Tunneling
We reformulate the Hamilton-Jacobi tunneling method for calculating Hawking
radiation in static, spherically-symmetric spacetimes by explicitly
incorporating a preferred family of frames. These frames correspond to a family
of observers tied to a locally static timelike Killing vector of the spacetime.
This formulation separates the role of the coordinates from the choice of
vacuum and thus provides a coordinate-independent formulation of the tunneling
method. In addition, it clarifies the nature of certain constants and their
relation to these preferred observers in the calculation of horizon
temperatures. We first use this formalism to obtain the expected temperature
for a static observer at finite radius in the Schwarzschild spacetime. We then
apply this formalism to the Schwarzschild-de Sitter spacetime, where there is
no static observer with 4-velocity equal to the static timelike Killing vector.
It is shown that a preferred static observer, one whose trajectory is geodesic,
measures the lowest temperature from each horizon. Furthermore, this observer
measures horizon temperatures corresponding to the well-known Bousso-Hawking
normalization.Comment: 11 pages, 1 2-part figure, references added, appendix added,
discussion streamline
Hamilton-Jacobi Tunneling Method for Dynamical Horizons in Different Coordinate Gauges
Previous work on dynamical black hole instability is further elucidated
within the Hamilton-Jacobi method for horizon tunneling and the reconstruction
of the classical action by means of the null-expansion method. Everything is
based on two natural requirements, namely that the tunneling rate is an
observable and therefore it must be based on invariantly defined quantities,
and that coordinate systems which do not cover the horizon should not be
admitted. These simple observations can help to clarify some ambiguities, like
the doubling of the temperature occurring in the static case when using
singular coordinates, and the role, if any, of the temporal contribution of the
action to the emission rate. The formalism is also applied to FRW cosmological
models, where it is observed that it predicts the positivity of the temperature
naturally, without further assumptions on the sign of the energy.Comment: Standard Latex document, typos corrected, refined discussion of
tunneling picture, subsection 5.1 remove
Tunnelling Methods and Hawking's radiation: achievements and prospects
The aim of this work is to review the tunnelling method as an alternative
description of the quantum radiation from black holes and cosmological
horizons. The method is first formulated and discussed for the case of
stationary black holes, then a foundation is provided in terms of analytic
continuation throughout complex space-time. The two principal implementations
of the tunnelling approach, which are the null geodesic method and the
Hamilton-Jacobi method, are shown to be equivalent in the stationary case. The
Hamilton-Jacobi method is then extended to cover spherically symmetric
dynamical black holes, cosmological horizons and naked singularities. Prospects
and achievements are discussed in the conclusions.Comment: Topical Review commissioned and accepted for publication by
"Classical and Quantum Gravity". 101 pages; 6 figure
- …
