714 research outputs found

    A consistent relaxation of optimal design problems for coupling shape and topological derivatives

    Get PDF
    In this article, we introduce and analyze a general procedure for approximating a ‘black and white’ shape and topology optimization problem with a density optimization problem, allowing for the presence of ‘grayscale’ regions. Our construction relies on a regularizing operator for smearing the characteristic functions involved in the exact optimization problem, and on an interpolation scheme, which endows the intermediate density regions with fictitious material properties. Under mild hypotheses on the smoothing operator and on the interpolation scheme, we prove that the features of the approximate density optimization problem (material properties, objective function, etc.) converge to their exact counterparts as the smoothing parameter vanishes. In particular, the gradient of the approximate objective functional with respect to the density function converges to either the shape or the topological derivative of the exact objective. These results shed new light on the connections between these two different notions of sensitivities for functions of the domain, and they give rise to different numerical algorithms which are illustrated by several experiment

    Voluntary Exercise Stabilizes Established Angiotensin II-Dependent Atherosclerosis in Mice through Systemic Anti-Inflammatory Effects.

    Get PDF
    We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis

    Tissue Expression and Actin Binding of a Novel N-Terminal Utrophin Isoform

    Get PDF
    Utrophin and dystrophin present two large proteins that link the intracellular actin cytoskeleton to the extracellular matrix via the C-terminal-associated protein complex. Here we describe a novel short N-terminal isoform of utrophin and its protein product in various rat tissues (N-utro, 62 kDa, amino acids 1–539, comprising the actin-binding domain plus the first two spectrin repeats). Using different N-terminal recombinant utrophin fragments, we show that actin binding exhibits pronounced negative cooperativity (affinity constants K1 = ∼5 × 106 and K2 = ∼1 × 105 M−1) and is Ca2+-insensitive. Expression of the different fragments in COS7 cells and in myotubes indicates that the actin-binding domain alone binds exlusively to actin filaments. The recombinant N-utro analogue binds in vitro to actin and in the cells associates to the membranes. The results indicate that N-utro may be responsible for the anchoring of the cortical actin cytoskeleton to the membranes in muscle and other tissues

    Histological Features of Pseudotumor-like Tissues From Metal-on-Metal Hips

    Get PDF
    Pseudotumor-like periprosthetic tissue reactions around metal-on-metal (M-M) hip replacements can cause pain and lead to revision surgery. The cause of these reactions is not well understood but could be due to excessive wear, or metal hypersensitivity or an as-yet unknown cause. The tissue features may help distinguish reactions to high wear from those with suspected metal hypersensitivity. We therefore examined the synovial lining integrity, inflammatory cell infiltrates, tissue organization, necrosis and metal wear particles of pseudotumor-like tissues from M-M hips revised for suspected high wear related and suspected metal hypersensitivity causes. Tissue samples from 32 revised hip replacements with pseudotumor-like reactions were studied. A 10-point histological score was used to rank the degree of aseptic lymphocytic vasculitis-associated lesions (ALVAL) by examination of synovial lining integrity, inflammatory cell infiltrates, and tissue organization. Lymphocytes, macrophages, plasma cells, giant cells, necrosis and metal wear particles were semiquantitatively rated. Implant wear was measured with a coordinate measuring machine. The cases were divided into those suspected of having high wear and those suspected of having metal hypersensitivity based on clinical, radiographic and retrieval findings. The Mann-Whitney test was used to compare the histological features in these two groups. The tissues from patients revised for suspected high wear had a lower ALVAL score, fewer lymphocytes, but more macrophages and metal particles than those tissues from hips revised for pain and suspected metal hypersensitivity. The highest ALVAL scores occurred in patients who were revised for pain and suspected metal hypersensitivity. Component wear was lower in that group. Pseudotumor-like reactions can be caused by high wear, but may also occur around implants with low wear, likely because of a metal hypersensitivity reaction. Histologic features including synovial integrity, inflammatory cell infiltrates, tissue organization, and metal particles may help differentiate these causes. Painful hips with periprosthetic masses may be caused by high wear, but if this can be ruled out, metal hypersensitivity should be considered

    An approach for estimating dosimetric uncertainties in deformable dose accumulation in pencil beam scanning proton therapy for lung cancer

    Get PDF
    Deformable image registration (DIR) is an important component for dose accumulation and associated clinical outcome evaluation in radiotherapy. However, the resulting deformation vector field (DVF) is subject to unavoidable discrepancies when different algorithms are applied, leading to dosimetric uncertainties of the accumulated dose. We propose here an approach for proton therapy to estimate dosimetric uncertainties as a consequence of modeled or estimated DVF uncertainties. A patient-specific DVF uncertainty model was built on the first treatment fraction, by correlating the magnitude differences of five DIR results at each voxel to the magnitude of any single reference DIR. In the following fractions, only the reference DIR needs to be applied, and DVF geometric uncertainties were estimated by this model. The associated dosimetric uncertainties were then derived by considering the estimated geometric DVF uncertainty, the dose gradient of fractional recalculated dose distribution and the direction factor from the applied reference DIR of this fraction. This estimated dose uncertainty was respectively compared to the reference dose uncertainty when different DIRs were applied individually for each dose warping. This approach was validated on seven NSCLC patients, each with nine repeated CTs. The proposed model-based method is able to achieve dose uncertainty distribution on a conservative voxel-to-voxel comparison within +/- 5% of the prescribed dose to the 'reference' dosimetric uncertainty, for 77% of the voxels in the body and 66%-98% of voxels in investigated structures. We propose a method to estimate DIR induced uncertainties in dose accumulation for proton therapy of lung tumor treatments

    mRNA Display Design of Fibronectin-based Intrabodies That Detect and Inhibit Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein

    Get PDF
    The nucleocapsid (N) protein of severe acute respiratory syndrome (SARS) coronavirus plays important roles in both viral replication and modulation of host cell processes. New ligands that target the N protein may thus provide tools to track the protein inside cells, detect interaction hot spots on the protein surface, and discover sites that could be used to develop new anti-SARS therapies. Using mRNA display selection and directed evolution, we designed novel antibody-like protein affinity reagents that target SARS N protein with high affinity and selectivity. Our libraries were based on an 88-residue variant of the 10th fibronectin type III domain from human fibronectin (10Fn3). This selection resulted in eight independent 10Fn3 intrabodies, two that require the N-terminal domain for binding and six that recognize the C terminus, one with K_d = 1.7 nM. 10Fn3 intrabodies are well expressed in mammalian cells and are relocalized by N in SARS-infected cells. Seven of the selected intrabodies tested do not perturb cellular function when expressed singly in vivo and inhibit virus replication from 11- to 5900-fold when expressed in cells prior to infection. Targeting two sites on SARS-N simultaneously using two distinct 10Fn3s results in synergistic inhibition of virus replication
    corecore