1,695 research outputs found

    Regularization, Renormalization and Range: The Nucleon-Nucleon Interaction from Effective Field Theory

    Get PDF
    Regularization and renormalization is discussed in the context of low-energy effective field theory treatments of two or more heavy particles (such as nucleons). It is desirable to regulate the contact interactions from the outset by treating them as having a finite range. The low energy physical observables should be insensitive to this range provided that the range is of a similar or greater scale than that of the interaction. Alternative schemes, such as dimensional regularization, lead to paradoxical conclusions such as the impossibility of repulsive interactions for truly low energy effective theories where all of the exchange particles are integrated out. This difficulty arises because a nonrelativistic field theory with repulsive contact interactions is trivial in the sense that the SS matrix is unity and the renormalized coupling constant zero. Possible consequences of low energy attraction are also discussed. It is argued that in the case of large or small scattering lengths, the region of validity of effective field theory expansion is much larger if the contact interactions are given a finite range from the beginning.Comment: 7 page

    Complex collective states in a one-dimensional two-atom system

    Full text link
    We consider a pair of identical two-level atoms interacting with a scalar field in one dimension, separated by a distance x21x_{21}. We restrict our attention to states where one atom is excited and the other is in the ground state, in symmetric or anti-symmetric combinations. We obtain exact collective decaying states, belonging to a complex spectral representation of the Hamiltonian. The imaginary parts of the eigenvalues give the decay rates, and the real parts give the average energy of the collective states. In one dimension there is strong interference between the fields emitted by the atoms, leading to long-range cooperative effects. The decay rates and the energy oscillate with the distance x21x_{21}. Depending on x21x_{21}, the decay rates will either decrease, vanish or increase as compared with the one-atom decay rate. We have sub- and super-radiance at periodic intervals. Our model may be used to study two-cavity electron wave-guides. The vanishing of the collective decay rates then suggests the possibility of obtaining stable configurations, where an electron is trapped inside the two cavities.Comment: 14 pages, 14 figures, submitted to Phys. Rev.

    Analysis of Solar Passive Techniques and Natural Ventilation Concepts in a Residential Building Including CFD Simulation

    Get PDF
    The European residential building sector accounts for over 40% of final energy consumption in the European Union member states. Therefore, an improvement of buildings energy efficiency represents a great instrument to reduce CO2 emissions. The first step to increase energy performance in buildings is to use passive strategies, such as orientation, natural ventilation or envelope optimisation. This paper presents an analysis of solar passive techniques and natural ventilation concepts in a case study: La Clota residential building, located near Barcelona (Spain). It has been carried out a comparative analysis of La Clota building in order to evaluate its energy and environmental performance with respect to a conventional building and also with respect to another hypothetic building with improved performance with respect to La Clota. Main tools used are energy dynamic simulation and, when necessary, CFD analysis in order to go into the effect of specific measures in depth. Accordingly, conclusions about the most effective energy measures are drawn, not only for this particular building, but also for other Mediterranean climate locations

    BIODIESEL FROM MICROALGAE: THE EFFECT OF FUEL PROPERTIES ON POLLUTANT EMISSIONS

    Get PDF
    Recently, biofuels have been presented as a viable alternative for the main challenges of the energy industry: the depleting supplies of petroleum and the global warming due to greenhouse effect. Biofuels may be produced from several different feedstocks, such as sugarcane, animal fat, oil crops or even microalgae. Replacing conventional petroleum sourced fuels with biofuels may significantly reduce global greenhouse effect gases emission when considering the life cycle of such fuels. Even with this advantage, biofuels present new challenges concerning the engine adaptation and the pollutant emissions. In this context, this paper aims to clarify the relation between fuel properties of microalgae biodiesel and pollutant emissions, studying which properties are desirable in these new fuels to guarantee engine operation without degradation of performance in comparison to conventional diesel

    Volatile Organic Compounds in the Po Basin. Part A: Anthropogenic VOCs

    Get PDF
    Measurements of volatile organic compounds (VOCs) were performed in the Po Basin, northern Italy in early summer 1998 within the PIPAPO project as well as in summer 2002 and autumn 2003 within the FORMAT project. During the three campaigns, trace gases and meteorological parameters were measured at a semi-rural station, around 35 km north of the city center of Milan. Low toluene and benzene concentrations and lower toluene to benzene ratios on weekends, on Sundays, and in August enabled the identification of a ‘weekend' and a ‘vacation' effect when anthropogenic emissions were lower due to less traffic and reduced industrial activities, respectively. Recurrent nighttime cyclohexane peaks suggested a periodical short-term release of cyclohexane close to the semi-rural sampling site. A multivariate receptor model analysis resulted in the distinction of different characteristic concentration profiles attributed to natural gas, biogenic impact, vehicle exhaust, industrial activities, and a single cyclohexane sourc

    Molecular Mechanisms of Proteinuria in Minimal Change Disease

    Get PDF
    Minimal change disease (MCD) is the most common type of idiopathic nephrotic syndrome in childhood and represents about 15% cases in adults. It is characterized by massive proteinuria, edema, hypoalbuminemia, and podocyte foot process effacement on electron microscopy. Clinical and experimental studies have shown an association between MCD and immune dysregulation. Given the lack of inflammatory changes or immunocomplex deposits in the kidney tissue, MCD has been traditionally thought to be mediated by an unknown circulating factor(s), probably released by T cells that directly target podocytes leading to podocyte ultrastructural changes and proteinuria. Not surprisingly, research efforts have focused on the role of T cells and podocytes in the disease process. Nevertheless, the pathogenesis of the disease remains a mystery. More recently, B cells have been postulated as an important player in the disease either by activating T cells or by releasing circulating autoantibodies against podocyte targets. There are also few reports of endothelial injury in MCD, but whether glomerular endothelial cells play a role in the disease remains unexplored. Genome-wide association studies are providing insights into the genetic susceptibility to develop the disease and found a link between MCD and certain human haplotype antigen variants. Altogether, these findings emphasize the complex interplay between the immune system, glomerular cells, and the genome, raising the possibility of distinct underlying triggers and/or mechanisms of proteinuria among patients with MCD. The heterogeneity of the disease and the lack of good animal models of MCD remain major obstacles in the understanding of MCD. In this study, we will review the most relevant candidate mediators and mechanisms of proteinuria involved in MCD and the current models of MCD-like injury

    The NN scattering 3S1-3D1 mixing angle at NNLO

    Full text link
    The 3S1-3D1 mixing angle for nucleon-nucleon scattering, epsilon_1, is calculated to next-to-next-to-leading order in an effective field theory with perturbative pions. Without pions, the low energy theory fits the observed epsilon_1 well for momenta less than 50\sim 50 MeV. Including pions perturbatively significantly improves the agreement with data for momenta up to 150\sim 150 MeV with one less parameter. Furthermore, for these momenta the accuracy of our calculation is similar to an effective field theory calculation in which the pion is treated non-perturbatively. This gives phenomenological support for a perturbative treatment of pions in low energy two-nucleon processes. We explain why it is necessary to perform spin and isospin traces in d dimensions when regulating divergences with dimensional regularization in higher partial wave amplitudes.Comment: 17 pages, journal versio
    corecore