24,831 research outputs found

    Chiral Corrections to the Hyperon Vector Form Factors

    Full text link
    We present the complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p^4) in the Heavy Baryon Chiral Perturbation Theory. Because of the Ademollo-Gatto theorem, at this order the results do not depend on unknown low energy constants and allow to test the convergence of the chiral expansion. We complete and correct previous calculations and find that O(p^3) and O(1/M_0) corrections are important. We also study the inclusion of the decuplet degrees of freedom, showing that in this case the perturbative expansion is jeopardized. These results raise doubts on the reliability of the chiral expansion for hyperons.Comment: 20 pages, 4 figures, v2: published versio

    A Systems-Based Approach to the Identification of User/Infrastructure Interdependencies as a Precursor to Identifying Opportunities to Improve Infrastructure Project Value/Cost Ratios

    Get PDF
    The bulk of the investment needed for infrastructure renewal in the United Kingdom will have to come from private sector investors, who will require attractive value/cost ratios. Government recognises infrastructure interdependencies can help deliver these, but returns remain uncertain. New business models are required to overcome this problem, which take account of enterprise-centred infrastructure interdependencies (interdependencies between social and economic enterprises and the infrastructures they use). The complex and closely coupled nature of enterprise and infrastructure systems can stand in the way of identifying these interdependencies; however, model-based systems engineering techniques offer a framework for dealing with this complexity. This paper describes research that the iBUILD project is doing to develop a methodology for modelling the interdependencies between infrastructure and the enterprises that use it, as a precursor to identifying opportunities to improve infrastructure project value/cost ratios. The methodology involves: identifying the suite of policy, strategy and operational documents relating to the enterprise-of-interest; eliciting system data from the documents and integrating it to create an enterprise system model; and, generating N2 diagrams from the model to identify the interdependencies

    Semiautomated Skeletonization of the Pulmonary Arterial Tree in Micro-CT Images

    Get PDF
    We present a simple and robust approach that utilizes planar images at different angular rotations combined with unfiltered back-projection to locate the central axes of the pulmonary arterial tree. Three-dimensional points are selected interactively by the user. The computer calculates a sub- volume unfiltered back-projection orthogonal to the vector connecting the two points and centered on the first point. Because more x-rays are absorbed at the thickest portion of the vessel, in the unfiltered back-projection, the darkest pixel is assumed to be the center of the vessel. The computer replaces this point with the newly computer-calculated point. A second back-projection is calculated around the original point orthogonal to a vector connecting the newly-calculated first point and user-determined second point. The darkest pixel within the reconstruction is determined. The computer then replaces the second point with the XYZ coordinates of the darkest pixel within this second reconstruction. Following a vector based on a moving average of previously determined 3- dimensional points along the vessel\u27s axis, the computer continues this skeletonization process until stopped by the user. The computer estimates the vessel diameter along the set of previously determined points using a method similar to the full width-half max algorithm. On all subsequent vessels, the process works the same way except that at each point, distances between the current point and all previously determined points along different vessels are determined. If the difference is less than the previously estimated diameter, the vessels are assumed to branch. This user/computer interaction continues until the vascular tree has been skeletonized

    K_l3 form factor with two-flavors of dynamical domain-wall quarks

    Get PDF
    We report on our calculation of K \to \pi vector form factor by numerical simulations of two-flavor QCD on a 16^3x32x12 lattice at a \simeq 0.12 fm using domain-wall quarks and DBW2 glue. Our preliminary result at a single sea quark mass correponding to m_PS/m_V \simeq 0.53 shows a good agreement with previous estimate in quenched QCD and that from a phenomenological model.Comment: 6 pages, 5 figures, poster presented at Lattice2005 (Weak matrix elements); v2: a reference adde

    Study and applications of retrodirective and self-adaptive electromagnetic wave controls to a Mars probe Quarterly report, 1 Oct. - 31 Dec. 1965

    Get PDF
    Design feasibility and applications of adaptive antenna circuits for deep space communication - antenna concepts, environmental effects, and phase lock loops and adaptive circuitr

    Measuring the effect of airway pressure on pulmonary arterial diameter in the intact rat lung

    Get PDF
    To study the relationship between transpulomnary pressure (Ptp), intravascular pressure (Pv), and the pulmonary arterial tree structure, morphometric measurements of pulmonary arterial trees were made in intact lungs from Sprague-Dawley rats. Using cone beam micro-CT and techniques we developed for imaging small animal lungs, volumetric CT data were acquired for Ptp from 0 - 12 mmHg and Pv from 5 - 30 mmHg. The diameter, D (measured range approximately 0.08-2.0 mm), vs. pressure, P, relation can be described by D(P) = D(0)(1+ α P), where α is a distensibility coefficient. Unlike studies performed in larger animals, where changes in either Ptp or Pv had nearly identical effect on vessel distensibility, we found that there is only a small dependence of arterial diameter on Ptp in the rat. For example, using the above relation where P=Ptp and Pv is held constant at 12mmHg, alpha = 0.55±0.42(SE) %/mmHg, compared with when P=Pv and Ptp is held at 12mmHg, alpha = 2.59±0.17(SE) %/mmHg

    Post-Acquisition Small-Animal Respiratory Gated Imaging Using Micro Cone-Beam CT

    Get PDF
    On many occasions, it is desirable to image lungs in vivo to perform a pulmonary physiology study. Since the lungs are moving, gating with respect to the ventilatory phase has to be performed in order to minimize motion artifacts. Gating can be done in real time, similar to cardiac imaging in clinical applications, however, there are technical problems that have lead us to investigate different approaches. The problems include breath-to-breath inconsistencies in tidal volume, which makes the precise detection of ventilatory phase difficult, and the relatively high ventilation rates seen in small animals (rats and mice have ventilation rates in the range of a hundred cycles per minute), which challenges the capture rate of many imaging systems (this is particularly true of our system which utilizes cone-beam geometry and a 2 dimensional detector). Instead of pre-capture ventilation gating we implemented a method of post-acquisition gating. We acquire a sequence of projections images at 30 frames per second for each of 360 viewing angles. During each capture sequence the rat undergoes multiple ventilation cycles. Using the sequence of projection images, an automated region of interest algorithm, based on integrated grayscale intensity, tracts the ventilatory phase of the lungs. In the processing of an image sequence, multiple projection images are identified at a particular phase and averaged to improve the signal-to-ratio. The resulting averaged projection images are input to a Feldkamp cone-beam algorithm reconstruction algorithm in order to obtain isotropic image volumes. Minimal motion artifact data sets improve qualitative and quantitative analysis techniques useful in physiologic studies of pulmonary structure and function

    Estimation of Pulmonary Arterial Volume Changes in the Normal and Hypertensive Fawn-Hooded Rat from 3D Micro-CT data

    Get PDF
    In the study of pulmonary vascular remodeling, much can be learned from observing the morphological changes undergone in the pulmonary arteries of the rat lung when exposed to chronic hypoxia or other challenges which elicit a remodeling response. Remodeling effects include thickening of vessel walls, and loss of wall compliance. Morphometric data can be used to localize the hemodynamic and functional consequences. We developed a CT imaging method for measuring the pulmonary arterial tree over a range of pressures in rat lungs. X-ray micro-focal isotropic volumetric imaging of the arterial tree in the intact rat lung provides detailed information on the size, shape and mechanical properties of the arterial network. In this study, we investigate the changes in arterial volume with step changes in pressure for both normoxic and hypoxic Fawn-Hooded (FH) rats. We show that FH rats exposed to hypoxia tend to have reduced arterial volume changes for the same preload when compared to FH controls. A secondary objective of this work is to quantify various phenotypes to better understand the genetic contribution of vascular remodeling in the lungs. This volume estimation method shows promise in high throughput phenotyping, distinguishing differences in the pulmonary hypertensive rat model
    corecore