1,303 research outputs found
Electrodynamics of balanced charges
In this work we modify the wave-corpuscle mechanics for elementary charges
introduced by us recently. This modification is designed to better describe
electromagnetic (EM) phenomena at atomic scales. It includes a modification of
the concept of the classical EM field and a new model for the elementary charge
which we call a balanced charge (b-charge). A b-charge does not interact with
itself electromagnetically, and every b-charge possesses its own elementary EM
field. The EM energy is naturally partitioned as the interaction energy between
pairs of different b-charges. We construct EM theory of b-charges (BEM) based
on a relativistic Lagrangian with the following properties: (i) b-charges
interact only through their elementary EM potentials and fields; (ii) the field
equations for the elementary EM fields are exactly the Maxwell equations with
proper currents; (iii) a free charge moves uniformly preserving up to the
Lorentz contraction its shape; (iv) the Newton equations with the Lorentz
forces hold approximately when charges are well separated and move with
non-relativistic velocities. The BEM theory can be characterized as
neoclassical one which covers the macroscopic as well as the atomic spatial
scales, it describes EM phenomena at atomic scale differently than the
classical EM theory. It yields in macroscopic regimes the Newton equations with
Lorentz forces for centers of well separated charges moving with
nonrelativistic velocities. Applied to atomic scales it yields a hydrogen atom
model with a frequency spectrum matching the same for the Schrodinger model
with any desired accuracy.Comment: Manuscript was edited to improve the exposition and to remove noticed
typo
Linear superposition in nonlinear wave dynamics
We study nonlinear dispersive wave systems described by hyperbolic PDE's in
R^{d} and difference equations on the lattice Z^{d}. The systems involve two
small parameters: one is the ratio of the slow and the fast time scales, and
another one is the ratio of the small and the large space scales. We show that
a wide class of such systems, including nonlinear Schrodinger and Maxwell
equations, Fermi-Pasta-Ulam model and many other not completely integrable
systems, satisfy a superposition principle. The principle essentially states
that if a nonlinear evolution of a wave starts initially as a sum of generic
wavepackets (defined as almost monochromatic waves), then this wave with a high
accuracy remains a sum of separate wavepacket waves undergoing independent
nonlinear evolution. The time intervals for which the evolution is considered
are long enough to observe fully developed nonlinear phenomena for involved
wavepackets. In particular, our approach provides a simple justification for
numerically observed effect of almost non-interaction of solitons passing
through each other without any recourse to the complete integrability. Our
analysis does not rely on any ansatz or common asymptotic expansions with
respect to the two small parameters but it uses rather explicit and
constructive representation for solutions as functions of the initial data in
the form of functional analytic series.Comment: New introduction written, style changed, references added and typos
correcte
Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing
Utilizing an eigenfunction decomposition, we study the growth and spectra of
energy in the vortical and wave modes of a 3D rotating stratified fluid as a
function of . Working in regimes characterized by moderate
Burger numbers, i.e. or , our results
indicate profound change in the character of vortical and wave mode
interactions with respect to . As with the reference state of
, for the wave mode energy saturates quite quickly
and the ensuing forward cascade continues to act as an efficient means of
dissipating ageostrophic energy. Further, these saturated spectra steepen as
decreases: we see a shift from to scaling for
(where and are the forcing and dissipation scales,
respectively). On the other hand, when the wave mode energy
never saturates and comes to dominate the total energy in the system. In fact,
in a sense the wave modes behave in an asymmetric manner about .
With regard to the vortical modes, for , the signatures of 3D
quasigeostrophy are clearly evident. Specifically, we see a scaling
for and, in accord with an inverse transfer of energy, the
vortical mode energy never saturates but rather increases for all . In
contrast, for and increasing, the vortical modes contain a
progressively smaller fraction of the total energy indicating that the 3D
quasigeostrophic subsystem plays an energetically smaller role in the overall
dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract
Quantitative genetics of learning ability and resistance to stress in Drosophila melanogaster.
Even though laboratory evolution experiments have demonstrated genetic variation for learning ability, we know little about the underlying genetic architecture and genetic relationships with other ecologically relevant traits. With a full diallel cross among twelve inbred lines of Drosophila melanogaster originating from a natural population (0.75 < F < 0.93), we investigated the genetic architecture of olfactory learning ability and compared it to that for another behavioral trait (unconditional preference for odors), as well as three traits quantifying the ability to deal with environmental challenges: egg-to-adult survival and developmental rate on a low-quality food, and resistance to a bacterial pathogen. Substantial additive genetic variation was detected for each trait, highlighting their potential to evolve. Genetic effects contributed more than nongenetic parental effects to variation in traits measured at the adult stage: learning, odorant perception, and resistance to infection. In contrast, the two traits quantifying larval tolerance to low-quality food were more strongly affected by parental effects. We found no evidence for genetic correlations between traits, suggesting that these traits could evolve at least to some degree independently of one another. Finally, inbreeding adversely affected all traits
Oceanographic structure drives the assembly processes of microbial eukaryotic communities
This is the final version. Available on open access from Springer Nature via the DOI in this recordArctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.This study was conducted as part of the MALINA Scientific Program led by MB and funded by the French National Research Agency (ANR), INSU-CNRS (Institut National des Sciences de l'Univers – Centre National de la Recherche Scientifique), CNES (Centre National d'Etudes Spatiales) and ESA (European Space Agency). Computing support was provided by CLUMEQ/Compute Canada. Additional funding was provided by the Natural Science and Engineering Council (NSERC) of Canada to CL, and Fond Québécois de Recherches Nature et Technologies (FQRNT) for Québec Océan, and is a contribution to ArcticNet. AF, AMa and AMo received scholarships from the Canadian Excellence Research Chair (CERC) in remote sensing of Canada’s new Arctic frontier, and JC was supported by FQRNT and the EnviroNorth (CREATE program from NSERC)
Ecosystem respiration: Drivers of daily variability and background respiration in lakes around the globe
We assembled data from a global network of automated lake observatories to test hypotheses regarding the drivers of ecosystem metabolism. We estimated daily rates of respiration and gross primary production (GPP) for up to a full year in each lake, via maximum likelihood fits of a free‐water metabolism model to continuous high‐frequency measurements of dissolved oxygen concentrations. Uncertainties were determined by a bootstrap analysis, allowing lake‐days with poorly constrained rate estimates to be down‐weighted in subsequent analyses. GPP and respiration varied considerably among lakes and at seasonal and daily timescales. Mean annual GPP and respiration ranged from 0.1 to 5.0 mg O2 L−1 d−1 and were positively related to total phosphorus but not dissolved organic carbon concentration. Within lakes, significant day‐to‐day differences in respiration were common despite large uncertainties in estimated rates on some lake‐days. Daily variation in GPP explained 5% to 85% of the daily variation in respiration after temperature correction. Respiration was tightly coupled to GPP at a daily scale in oligotrophic and dystrophic lakes, and more weakly coupled in mesotrophic and eutrophic lakes. Background respiration ranged from 0.017 to 2.1 mg O2 L−1 d−1 and was positively related to indicators of recalcitrant allochthonous and autochthonous organic matter loads, but was not clearly related to an indicator of the quality of allochthonous organic matter inputs
Neoclassical Theory of Elementary Charges with Spin of 1/2
We advance here our neoclassical theory of elementary charges by integrating
into it the concept of spin of 1/2. The developed spinorial version of our
theory has many important features identical to those of the Dirac theory such
as the gyromagnetic ratio, expressions for currents including the spin current,
and antimatter states. In our theory the concepts of charge and anticharge
relate naturally to their "spin" in its rest frame in two opposite directions.
An important difference with the Dirac theory is that both the charge and
anticharge energies are positive whereas their frequencies have opposite signs
Relativistic dynamics of accelerating particles derived from field equations
In relativistic mechanics the energy-momentum of a free point mass moving
without acceleration forms a four-vector. Einstein's celebrated energy-mass
relation E=mc^2 is commonly derived from that fact. By contrast, in Newtonian
mechanics the mass is introduced for an accelerated motion as a measure of
inertia. In this paper we rigorously derive the relativistic point mechanics
and Einstein's energy-mass relation using our recently introduced neoclassical
field theory where a charge is not a point but a distribution. We show that
both the approaches to the definition of mass are complementary within the
framework of our field theory. This theory also predicts a small difference
between the electron rest mass relevant to the Penning trap experiments and its
mass relevant to spectroscopic measurements.Comment: A few typos were correcte
Far-off-resonant wave interaction in one-dimensional photonic crystals with quadratic nonlinearity
We extend a recently developed Hamiltonian formalism for nonlinear wave
interaction processes in spatially periodic dielectric structures to the
far-off-resonant regime, and investigate numerically the three-wave resonance
conditions in a one-dimensional optical medium with nonlinearity.
In particular, we demonstrate that the cascading of nonresonant wave
interaction processes generates an effective nonlinear response in
these systems. We obtain the corresponding coupling coefficients through
appropriate normal form transformations that formally lead to the Zakharov
equation for spatially periodic optical media.Comment: 14 pages, 4 figure
- …