981 research outputs found

    Effects of the bias enhanced nucleation hot-filament chemical-vapor deposition parameters on diamond nucleation on iridium

    Get PDF
    The effects of the bias current density and the filament-to-substrate distance on the nucleation of diamond on iridium buffer layers were investigated in a hot-filament chemical-vapor deposition (HFCVD) reactor. The nucleation density increased by several orders of magnitude with the raise of the bias current density. According to high-resolution field-emission gun scanning electron microscopy observation, diamond nuclei formed during bias-enhanced nucleation (BEN) did not show any preferred oriented growth. Moreover, the first-nearest-neighbor distance distribution was consistent with a random nucleation mechanism. This occurrence suggested that the diffusion of carbon species at the substrate surface was not the predominant mechanism taking place during BEN in the HFCVD process. This fact was attributed to the formation of a graphitic layer prior to diamond nucleation. We also observed that the reduction of the filament sample distance during BEN was helpful for diamond growth. This nucleation behavior was different from the one previously reported in the case of BEN-microwave chemical-vapor deposition experiments on iridium and has been tentatively explained by taking into account the specific properties and limitations of the HFCVD technique

    Thermodynamic evidence of giant salt deposit formation by serpentinization: an alternative mechanism to solar evaporation

    Get PDF
    International audienceThe evaporation of seawater in arid climates is currently the main accepted driving mechanism for the formation of ancient and recent salt deposits in shallow basins. However, the deposition of huge amounts of marine salts, including the formation of tens of metres of highly soluble types (tachyhydrite and bischofite) during the Aptian in the South Atlantic and during the Messinian Salinity Crisis, are inconsistent with the wet and warm palaeoclimate conditions reconstructed for these periods. Recently, a debate has been developed that opposes the classic model of evaporite deposition and argues for the generation of salt by serpentinization. The products of the latter process can be called "dehydratites". The associated geochemical processes involve the consumption of massive amounts of pure water, leading to the production of concentrated brines. Here, we investigate thermodynamic calculations that account for high salinities and the production of soluble salts and MgCl2-rich brines through sub-seafloor serpentinization processes. Our results indicate that salt and brine formation occurs during serpentinization and that the brine composition and salt assemblages are dependent on the temperature and CO2 partial pressure. Our findings help explain the presence and sustainability of highly soluble salts that appear inconsistent with reconstructed climatic conditions and demonstrate that the presence of highly soluble salts probably has implications for global tectonics and palaeoclimate reconstructions

    A High-Resolution Regional Climate Model Physics Ensemble for Northern Sub-Saharan Africa

    Get PDF
    While climate information from General Circulation Models (GCMs) are usually too coarse for climate impact modelers or decision makers from various disciplines (e.g., hydrology, agriculture), Regional Climate Models (RCMs) provide feasible solutions for downscaling GCM output to finer spatiotemporal scales. However, it is well known that the model performance depends largely on the choice of the physical parameterization schemes, but optimal configurations may vary e.g., from region to region. Besides land-surface processes, the most crucial processes to be parameterized in RCMs include radiation (RA), cumulus convection (CU), cloud microphysics (MP), and planetary boundary layer (PBL), partly with complex interactions. Before conducting long-term climate simulations, it is therefore indispensable to identify a suitable combination of physics parameterization schemes for these processes. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis product ERA-Interim as lateral boundary conditions, we derived an ensemble of 16 physics parameterization runs for a larger domain in Northern sub-Saharan Africa (NSSA), northwards of the equator, using two different CU-, MP-, PBL-, and RA schemes, respectively, using the Weather Research and Forecasting (WRF) model for the period 2006–2010 in a horizontal resolution of approximately 9 km. Based on different evaluation strategies including traditional (Taylor diagram, probability densities) and more innovative validation metrics (ensemble structure-amplitude-location (eSAL) analysis, Copula functions) and by means of different observation data for precipitation (P) and temperature (T), the impact of different physics combinations on the representation skill of P and T has been analyzed and discussed in the context of subsequent impact modeling. With the specific experimental setup, we found that the selection of the CU scheme has resulted in the highest impact with respect to the representation of P and T, followed by the RA parameterization scheme. Both, PBL and MP schemes showed much less impact. We conclude that a multi-facet evaluation can finally lead to better choices about good physics scheme combinations

    Extending the prediction of the thermodynamic properties of clay minerals to the trapping of trace elements

    Get PDF
    The thermodynamic properties of clay minerals, which control the stability of these minerals in solution, are still a matter of debate in spite of recent advances (Gailhanou et al., submitted). This is especially the case for the minerals that may structurally include trace elements and potential radionuclides such like Ni, Cd, Co, Cr, Mn, Pb, ... The usual methods developed in order to predict thermodynamic properties are parameterised using a given set of minerals. For clay minerals, the latter are mainly composed by Si, Al, Fe and Mg, apart from the alkalis elements (Chermak and Rimstidt, 1989), which means that predictions are limited to minerals whose layers are composed by Si, Al, Fe and Mg. At the vicinity of H&ILW disposal cells, the possible interactions between clay rock or engineered barrier and waste degradation products can result in the appearance of clay minerals that may structurally include radionuclides within an irreversible trapping process. This work aims at proposing a method for predicting the thermodynamic properties of such minerals. Theoretical principle and selection of calibration phases Vieillard (1994) has developed a methodology of estimation based on the difference of electronegativity by considering three scales of values of the parameter HO=(Mz+clay) in the three sites of phyllosilicates. We have considered the work of Vieillard (1994) that originally applies to the estimate of H0f and extended it to the estimate of Cp(T), S0 and V. Some popular estimate methods (Chermak and Rimstidt, 1989) are based on the hypothesis that the thermodynamic property of a mineral can be obtained by combining the properties of its components. An improvement of this principle had consisted in decomposing minerals into their polyhedral components (Chermak and Rimstidt, 1989). Now, we can write the fictive solution equilibrium with a basic polyhedral component MxOy as: and assumming the entropy of this fictive reaction is zero, we can define a SO= parameter as: . The value for the oxide analog of the polyhedral unit is obtained by implementing S0 of the oxide in the S0(MxOy) term. We have also defined, from the same reasoning, similar parameters for heat capacity and volume of the basic polyhedral components: ; . Results and discussion On Figure 1, we have displayed, for entropy, the correlation obtained between calculated values of SO= for the polyhedral unit and for the oxide analog. A straight line and a second-order function are obtained, for the interlayer and octahedral cations, respectively, with a good correlation coefficient. Fig. 1 - Development of predictive capacity for entropy estimates The implementation of the derived semi-empirical, first or second order relations allows to estimate the thermodynamic properties of a clay mineral, MX80 (Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe3+0.173Fe2+0.035)O10(OH)2) in the present case, loaded by 6 radionuclides and to compare the values with the results obtained by Gailhanou et al. (submitted).The results can be expressed in terms of the concentrations for the elements Ni, Cd, Co, Cr, Mn and Pb and in terms of energetic potential with respect to the measurements performed by Gailhanou et al. (submitted)

    Surface modification of flax yarns by enzymatic treatment and their interfacial adhesion with thermoset matrices

    Get PDF
    The aim of this study was to assess the effects of commercially available and relatively inexpensive enzyme preparations based on endo 1,4-β-xylanase, pectinase and xyloglucanase on the thermal (TGA), morphological (SEM), chemical (FT-IR) and mechanical (single yarn tensile tests) properties of flax yarns. The preparation based on pectinase and xyloglucanase provided the best results, resulting in the effective removal of hydrophilic components such as hemicellulose and pectin, the individualization of yarns and increased thermal stability at the expense of a reduction in mechanical properties, depending on the treatment parameters. Single yarn fragmentation tests pointed out an improved interfacial adhesion after enzymatic treatment, with reduced debonding length values of 18% for an epoxy matrix and up to 36% for a vinylester resin compared to untreated flax yarns

    PHIL photoinjector test line

    Full text link
    LAL is now equiped with its own platform for photoinjectors tests and Research and Developement, named PHIL (PHotoInjectors at LAL). This facility has two main purposes: push the limits of the photoinjectors performances working on both the design and the associated technology and provide a low energy (MeV) short pulses (ps) electron beam for the interested users. Another very important goal of this machine will be to provide an opportunity to form accelerator physics students, working in a high technology environment. To achieve this goal a test line was realised equipped with an RF source, magnets and beam diagnostics. In this article we will desrcibe the PHIL beamline and its characteristics together with the description of the first two photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns

    Wigner function based propagation of stochastic field emissions from planar electromagnetic sources

    Get PDF
    Modelling the electromagnetic radiation from modern digital systems – acting effectively as extended, stochastic sources as part of a complex architecture – is a challenging task. We follow an approach here based on measuring and propagating field-field autocorrelation functions (ACFs) after suitable averaging. From the modelling side, we use the Wigner transform of the ACFs to describe random wave fields in terms of position and direction of propagation variables. An approximate propagator for the components of the radiated magnetic field is constructed for these ACFs based on a linear flow map. Field-field ACFs at aperture level are obtained from scanning measurements of complex sources. Distance and spatial resolution of the scanning plane is less than a wavelength from the source plane to capture the imprint of evanescent waves in the nearfield ACFs. Near-field scanning and efficient near-to-far field propagation is carried out and compared with measurements. Results of this study will be useful to assist far-field predictions, source reconstruction, and emission source microscopy
    • …
    corecore