3,393 research outputs found

    On the B and J/Psi Cross Section Measurements at Ua1 and CDF

    Full text link
    We analise the implications of the measurement of BB and J/ψJ/\psi inclusive \pt\ distributions performed in ppˉp\bar p collisions by the UA1 and CDF experiments.Comment: 16 pages + 8 topdrawer figs included at the end, Latex, IFUP-TH 2/9

    Hunting for CDF Multi-Muon "Ghost" Events at Collider and Fixed-Target Experiments

    Full text link
    In 2008 the CDF collaboration discovered a large excess of events containing two or more muons, at least one of which seemed to have been produced outside the beam pipe. We investigate whether similar "ghost" events could (and should) have been seen in already completed experiments. The CDF di-muon data can be reproduced by a simple model where a relatively light X particle undergoes four-body decay. This model predicts a large number of ghost events in Fermilab fixed-target experiments E772, E789 and E866, applying the cuts optimized for analyses of Drell-Yan events. A correct description of events with more than two muons requires a more complicated model, where two X particles are produced from a very broad resonance Y. This model can be tested in fixed-target experiments only if the cut on the angles, or rapidities, of the muons can be relaxed. Either way, the UA1 experiment at the CERN ppbar collider should have observed O(100) ghost events.Comment: 15 pages, 9 figure

    Is There a Significant Excess in Bottom Hadroproduction at the Tevatron?

    Full text link
    We discuss the excess in the hadroproduction of B mesons at the Tevatron. We show that an accurate use of up-to-date information on the B fragmentation function reduces the observed excess to an acceptable level. Possible implications for experimental results reporting bottom quark cross sections, also showing an excess with respect to next-to-leading order theoretical predictions, are discussed.Comment: 5 pages, Latex, 4 figures. Submitted to Phys. Rev. Let

    Probing small-xx gluons by low-mass Drell-Yan pairs at colliders

    Full text link
    The transverse-momentum (QTQ_T) distribution of low-mass Drell-Yan pairs is calculated in QCD perturbation theory with all-order resummation of αs(αsln(QT2/Q2))n\alpha_s (\alpha_s \ln(Q^2_T/Q^2))^n type terms. We demonstrate that the rapidity distribution of low-mass Drell-Yan pairs at large-enough transverse momentum is an advantageous source of constraints on the gluon distribution and its nuclear dependence. We argue that low-mass Drell-Yan pairs in the forward region provide a good and clean probe of small-xx gluons at collider energies.Comment: 25 pages, 16 figure

    Measurement of the t-channel single top quark production cross section in pp collisions at √s=7TeV

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMElectroweak production of the top quark is measured for the first time in pp collisions at √s=7  TeV, using a data set collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 36  pb−1. With an event selection optimized for t-channel production, two complementary analyses are performed. The first one exploits the special angular properties of the signal, together with background estimates from the data. The second approach uses a multivariate analysis technique to probe the compatibility with signal topology expected from electroweak top-quark production. The combined measurement of the cross section is 83.6 ± 29.8 (stat+syst) ± 3.3(lumi) pb, consistent with the standard model expectationWe thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLPFAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA

    Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV

    Full text link
    Artículo escrito por muchos autores, sólo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración y los autores que firman como pertenecientes a la UAMA search for supersymmetry is presented based on events with large missing transverse energy, no isolated electron or muon, and at least three jets with one or more identified as a bottom-quark jet. A simultaneous examination is performed of the numbers of events in exclusive bins of the scalar sum of jet transverse momentum values, missing transverse energy, and bottom-quark jet multiplicity. The sample, corresponding to an integrated luminosity of 19.4 fb−1, consists of proton–proton collision data recorded at a center-of-mass energy of 8 TeV with the CMS detector at the LHC in 2012. The observed numbers of events are found to be consistent with the standard model expectation, which is evaluated with control samples in data. The results are interpreted in the context of two simplified supersymmetric scenarios in which gluino pair production is followed by the decay of each gluino to an undetected lightest supersymmetric particle and either a bottom or top quark–antiquark pair, characteristic of gluino mediated bottom- or top-squark production. Using the production cross section calculated to next-to-leading-order plus next-to-leading-logarithm accuracy, and in the limit of a massless lightest supersymmetric particle, we exclude gluinos with masses below 1170 GeV and 1020 GeV for the two scenarios, respectivelyWe congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF(Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN(Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans lʼIndustrie et dans lʼAgriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSR

    Measurement of the Λb cross section and the Λ- b to Λb ratio with J/ψΛ decays in pp collisions at √s=7 TeV

    Full text link
    Artículo escrito por muchos autores, sólo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración y los autores que firman como pertenecientes a la UAMThe Λb differential production cross section and the cross section ratio σ(Λb)/σ(Λb) are measured as functions of transverse momentum pΛb T and rapidity |yΛb | in pp collisions at √ s = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Λb decays reconstructed in the exclusive final state J/ψΛ, with the subsequent decays J/ψ →μ+μ− and Λ→pπ, using a data sample corresponding to an integrated luminosity of 1.9 fb−1. The product σ(Λb) × B(Λb→J/ψΛ) versus pΛb T falls faster than that of b mesons. The measured value of σ(Λb) × B(Λb→J/ψΛ) for pΛb T > 10 GeV and |yΛb | < 2.0 is 1.16±0.06±0.12 nb, and the integrated σ(Λb)/σ(Λb) ratio is 1.02±0.07±0.09, where the uncertainties are statistical and systematic, respectivelyWe thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLPFAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fun

    Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at √sNN=2.76 TeV

    Full text link
    Artículo escrito por un elevado número de autores, sólo se referencian el primero, los autores que firman como Universidad Autónoma de Madrid y el grupo de colaboración en el caso de que aparezca en el artículoThe anisotropy of the azimuthal distributions of charged particles produced in √ sNN = 2.76 TeV PbPb collisions is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter, v2, defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee-Yang zeros. The anisotropy is presented as a function of transverse momentum (pT), pseudorapidity (η) over a broad kinematic range, 0.3 < pT < 20 GeV/c, |η| < 2.4, and in 12 classes of collision centrality from 0 to 80%. The results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energiesFinally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education, Youth, and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education, and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent Financing Contract No. SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Ènergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science, and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; theMinistry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology and National Electronics and Computer Technology Center; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, United Kingdom; the US Department of Energy, and the US National Science Foundation. Individuals have received 014902-23 S. CHATRCHYAN et al. PHYSICAL REVIEW C 87, 014902 (2013) support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth, and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fun

    Direct photons measured by the PHENIX experiment at RHIC

    Get PDF
    Results from the PHENIX experiment at RHIC on direct photon production in p+p, d+Au, and Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. In p+p collisions, direct photon production at high p_T behaves as expected from perturbative QCD calculations. The p+p measurement serves as a baseline for direct photon production in Au+Au collisions. In d+Au collisions, no effects of cold nuclear matter are found within the large uncertainty of the measurement. In Au+Au collisions, the production of high p_T direct photons scales as expected for particle production in hard scatterings. This supports jet quenching models, which attribute the suppression of high p_T hadrons to the energy loss of fast partons in the medium produced in the collision. Low p_T direct photons, measured via e+e- pairs with small invariant mass, are possibly related to the production of thermal direct photons.Comment: 5 pages, 5 figures, Proceedings of the Hot Quarks 2006 Workshop for young scientists on the physics of ultra-relativistic nucleus-nucleus collisions, Villasimius, Sardinia, Italy, May 15--20, 200

    Erratum: Search for new physics in events with same-sign dileptons and jets in pp collisions at √s = 8 TeV

    Full text link
    Journal of High Energy Physics 2015.1 (2015): 014 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)Artículo escrito por un elevado número de autores, sólo se referencian el nombre del que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere y los autores que firman como pertenecientes a la UA
    corecore