95,389 research outputs found
Articulated elastic-loop roving vehicles
Prototype vehicle features exceptional obstacle-negotiating and slope-climbing capabilities plus high propulsive efficiency. Concept should interest designers of polar or ocean-bottom research vehicles. Also, its large footprint and low ground pressure will minimize ecological damage on terrain with low bearing strength, as in off-the-road application
Mechanical behavior of thermal barrier coatings for gas turbine blades
Plasma-sprayed thermal barrier coatings (TBCs) will enable turbine components to operate at higher temperatures and lower cooling gas flow rates; thereby improving their efficiency. Future developments are limited by precise knowledge of the material properties and failure mechanisms of the coating system. Details of this nature are needed for realistic modeling of the coating system which will, in turn, promote advancements in coating technology. Complementary experiments and analytical modeling which were undertaken in order to define and measure the important failure processes for plasma-sprayed coatings are presented. The experimental portion includes two different tests which were developed to measure coating properties. These are termed tensile adhesion and acoustic emission tests. The analytical modeling section details a finite element method which was used to calculate the stress distribution in the coating system. Some preliminary results are presented
On-demand microwave generator of shaped single photons
We demonstrate the full functionality of a circuit that generates single
microwave photons on demand, with a wave packet that can be modulated with a
near-arbitrary shape. We achieve such a high tunability by coupling a
superconducting qubit near the end of a semi-infinite transmission line. A dc
superconducting quantum interference device shunts the line to ground and is
employed to modify the spatial dependence of the electromagnetic mode structure
in the transmission line. This control allows us to couple and decouple the
qubit from the line, shaping its emission rate on fast time scales. Our
decoupling scheme is applicable to all types of superconducting qubits and
other solid-state systems and can be generalized to multiple qubits as well as
to resonators.Comment: 10 pages, 7 figures. Published versio
Finger-gate array quantum pumps:pumping characteristics and mechanisms
We study the pumping effects, in both the adiabatic and nonadiabatic regimes,
of a pair of \QTR{it}{finite} finger-gate array (FGA) on a narrow channel.
Connection between the pumping characteristics and associated mechanisms is
established. The pumping potential is generated by ac biasing the FGA pair. For
a single pair (N=1) of finger gates (FG's), the pumping mechanism is due to the
coherent inelastic scattering of the traversing electron to its subband
threshold. For a pair of FGA with pair number , the dominant pumping
mechanism becomes that of the time-dependent Bragg reflection. The contribution
of the time-dependent Bragg reflection to the pumping is enabled by breaking
the symmetry in the electron transmission when the pumping potential is of a
predominant propagating type. This propagating wave condition can be achieved
both by an appropriate choice of the FGA pair configuration and by the
monitoring of a phase difference  between the ac biases in the FGA pair.
The robustness of such a pumping mechanism is demonstrated by considering a FGA
pair with only pair number N=4.Comment: 7 pages, 6 figure
Controlled multibody dynamics simulation for large space structures
Multibody dynamics discipline, and dynamic simulation in control structure interaction (CSI) design are discussed. The use, capabilities, and architecture of the Large Angle Transient Dynamics (LATDYN) code as a simulation tool are explained. A generic joint body with various types of hinge connections; finite element and element coordinate systems; results of a flexible beam spin-up on a plane; mini-mast deployment; space crane and robotic slewing manipulations; a potential CSI test article; and multibody benchmark experiments are also described
Pseudo-Dirac Neutrinos
We propose a scheme in which a pseudo-Dirac structure for three family of
light neutrinos is generated naturally. An extended Higgs sector with a majoron
is used for the generation of the leptonic number violating neutrino Majorana
mass. The resultant neutrino mass matrix could easily fit all available
experimental data. We discuss relevant constraints on the scales involved for
the model to be phenomenologically viable.Comment: 12 pages Revtex, no figure; minor extension in discussions; version
  to appear in Phys. Lett. 
Simulation of valveless micropump and mode analysis
In this work, a 3-D simulation is performed to study for the solid-fluid
coupling effect driven by piezoelectric materials and utilizes asymmetric
obstacles to control the flow direction. The result of simulation is also
verified. For a micropump, it is crucial to find the optimal working frequency
which produce maximum net flow rate. The PZT plate vibrates under the first
mode, which is symmetric. Adjusting the working frequency, the maximum flow
rate can be obtained. For the micrpump we studied, the optimal working
frequency is 3.2K Hz. At higher working frequency, say 20K Hz, the fluid-solid
membrane may come out a intermediate mode, which is different from the first
mode and the second mode. It is observed that the center of the mode drifts.
Meanwhile, the result shows that a phase shift lagging when the excitation
force exists in the vibration response. Finally, at even higher working
frequency, say 30K Hz, a second vibration mode is observed.Comment: Submitted on behalf of EDA Publishing Association
  (http://irevues.inist.fr/EDA-Publishing
Application of Nimbus-6 microwave data to problems in precipitation prediction for the Pacific west coast
The preliminary results of a research study that emphasizes the analysis and interpretation of data related to total precipitable water and nonprecipitating cloud liquid water obtained from NIMBUS-6 SCAMS are reported. Sixteen cyclonic storm situations in the northeastern Pacific Ocean that resulted in significant rainfall along the west coast of the United States during the winter season October 1975 through February 1976 are analyzed in terms of their distributions and amounts of total water vapor and liquid water, as obtained from SCAMS data. The water-substance analyses for each storm case are related to the distribution and amount of coastal precipitation observed during the subsequent time period when the storm system crosses the coastline. Concomitant precipitation predictions from the LFM are also incorporated. Techniques by which satellite microwave data over the ocean can be used to improve precipitation prediction for the Pacific West Coast are emphasized
Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film
We report the tunability of the exchange bias effect by the first-order
metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5
nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey
transition, the exchange bias field is substantially enhanced because of a
sharp increase in magnetocrystalline anisotropy constant from high-temperature
cubic to lowtemperature monoclinic structure. Moreover, with respect to the
Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4
(40 nm)/MgO (001) bilayer is greatly increased for all the temperature range,
which would be due to the coupling between Co spins and Fe spins across the
interface
- …
