177,434 research outputs found
Optimization of Dimples in Microchannel Heat Sink with Impinging Jets—Part B: the Influences of Dimple Height and Arrangement
The combination of a microchannel heat sink with impinging jets and dimples (MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxes. Based on the previous work by analysing the effect of dimple radius on the overall performance of MHSIJD, the effects of dimple height and arrangement were numerically analysed. The velocity distribution, pressure drop, and thermal performance of MHSIJD under various dimple heights and arrangements were presented. The results showed that: MHSIJD with higher dimples had better overall performance with dimple radius being fixed; creating a mismatch between the impinging hole and dimple can solve the issue caused by the drift phenomenon; the mismatch between the impinging hole and dimple did not exhibit better overall performance than a well-matched design
AC Oscillation of a Spin Soliton Driven by a Constant Force
The phenomena of AC oscillation generated by a DC drive, such as the famous
Josephson AC effect in superconductors and Bloch oscillation in solid physics,
are of great interest in physics. Here we report another example of such
counter-intuitive phenomenon that a spin soliton in a two-component
Bose-Einstein condensate is driven by a constant force: The initially static
spin soliton first moves in a direction opposite to the force and then changes
direction, showing an extraordinary AC oscillation in a long term. In sharp
contrast to the Josephson AC effect and Bloch oscillation, we find that the
nonlinear interactions play important roles and the spin soliton can exhibit a
periodic transition between negative and positive inertial mass even in the
absence of periodic potentials. We then develop an explicit quasiparticle model
that can account for this extraordinary oscillation satisfactorily. Important
implications and possible applications of our finding are discussed.Comment: 9 pages, 6 figure
Fast quantum information transfer with superconducting flux qubits coupled to a cavity
We present a way to realize quantum information transfer with superconducting
flux qubits coupled to a cavity. Because only resonant qubit-cavity interaction
and resonant qubit-pulse interaction are applied, the information transfer can
be performed much faster, when compared with the previous proposals. This
proposal does not require adjustment of the qubit level spacings during the
operation. Moreover, neither uniformity in the device parameters nor exact
placement of qubits in the cavity is needed by this proposal.Comment: 6 pages, 3 figure
Solving the global atmospheric equations through heterogeneous reconfigurable platforms
One of the most essential and challenging components in climate modeling is the atmospheric model. To solve multiphysical atmospheric equations, developers have to face extremely complex stencil kernels that are costly in terms of both computing and memory resources. This article aims to accelerate the solution of global shallow water equations (SWEs), which is one of the most essential equation sets describing atmospheric dynamics. We first design a hybrid methodology that employs both the host CPU cores and the field-programmable gate array (FPGA) accelerators to work in parallel. Through a careful adjustment of the computational domains, we achieve a balanced resource utilization and a further improvement of the overall performance. By decomposing the resource-demanding SWE kernel, we manage to map the double-precision algorithm into three FPGAs. Moreover, by using fixed-point and reduced-precision floating point arithmetic, we manage to build a fully pipelined mixed-precision design on a single FPGA, which can perform 428 floating-point and 235 fixed-point operations per cycle. The mixed-precision design with four FPGAs running together can achieve a speedup of 20 over a fully optimized design on a CPU rack with two eight-core processorsand is 8 times faster than the fully optimized Kepler GPU design. As for power efficiency, the mixed-precision design with four FPGAs is 10 times more power efficient than a Tianhe-1A supercomputer node.</jats:p
Fabrication of transparent conducting amorphous Zn–Sn–In–O thin films by direct current magnetron sputtering
Amorphous ZnO–SnO2–In2O3 films were grown by direct current magnetron sputtering from vacuum hot pressed ceramic oxide targets of Zn:In:Sn cation ratios 1:2:1 and 1:2:1.5 onto glass substrates. X-ray diffraction analysis showed that the microstructure remained amorphous during annealing at 200 °C for up to 5 hours. By monitoring the electrical resistivity, oxygen content and substrate temperature were optimized during deposition. The optimal films were characterized by Hall Effect, work function and optical spectroscopy measurements. Films of 1:2:1 composition showed the lowest resistivity (7.6×10−4 Ω-cm), when deposited onto substrates preheated to 300 °C. Transmissivity of all films exceeded 80% in the visible spectral region. The energy gap was 3.52–3.74 eV, and the work function ranged 5.08–5.22 eV, suitable for cathode applications in organic light emitting diodes. Overall, the film characteristics were comparable or superior to those of amorphous tin-doped indium oxide and zinc-doped indium oxide films and may serve as viable, lower-cost alternatives
Transient analysis using conical shell elements
The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements
- …
