5,957 research outputs found

    Obtaining lignin nanoparticles by sonication

    Get PDF
    Lignin, the main natural aromatic polymer was always aroused researchers interest. Currently around 90% of this biomaterial is burned for energy. It has a very complex and complicated structure which depends on the separation method and plant species, what determine difficulties to use as a raw material widely. This research presents a physical method to modify lignin by ultrasonic irradiation in order to obtain nanoparticles. The nanoparticles synthesized were dimensionally and morphologically characterized. At the same time the preoccupations were to determine the structural and compositional changes that occurred after sonication. To achieve this, two types of commercial lignins (wheat straw and Sarkanda grass) were used and the modifications were analyzed by FTIR-spectroscopy, GPC-chromatography, (31)P-NMR-spectroscopy and HSQC0. The results confirm that the compositional and structural changes of nanoparticles obtained are not significantly modified at the intensity applied but depend on the nature of lignin

    High temperature ferromagnetism of Li-doped vanadium oxide nanotubes

    Full text link
    The nature of a puzzling high temperature ferromagnetism of doped mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al., Nature 431 (2004) 672, has been addressed by static magnetization, muon spin relaxation, nuclear magnetic and electron spin resonance spectroscopy techniques. A precise control of the charge doping was achieved by electrochemical Li intercalation. We find that it provides excess electrons, thereby increasing the number of interacting magnetic vanadium sites, and, at a certain doping level, yields a ferromagnetic-like response persisting up to room temperature. Thus we confirm the surprising previous results on the samples prepared by a completely different intercalation method. Moreover our spectroscopic data provide first ample evidence for the bulk nature of the effect. In particular, they enable a conclusion that the Li nucleates superparamagnetic nanosize spin clusters around the intercalation site which are responsible for the unusual high temperature ferromagnetism of vanadium oxide nanotubes.Comment: with some amendments published in Europhysics Letters (EPL) 88 (2009) 57002; http://epljournal.edpsciences.or

    Do Search for Dibaryonic De - Excitations in Relativistic Nuclear Reactions

    Full text link
    Some odd characteristics are observed in the single particle distributions obtained from He+Li He + Li interactions at 4.5AGeV/c 4.5 AGeV/c momenta which are explained as the manifestation of a new mechanism of strangeness production via dibaryonic de-excitations. A signature of the formation of hadronic and baryonic clusters is also reported. The di-pionic signals of the dibaryonic orbital de-excitations are analyzed in the frame of the MIT - bag Model and a Monte Carlo simulation.The role played by the dibaryonic resonances in relativistic nuclear collisions could be a significant one. Key words: Relativistic nuclear interactions negative pions, negative kaons, di-pions , streamer chamber, dibaryons, MIT - bag model PACS codes: 25.75.+r,14.40.Aq,14.20.Pt,12.40.AsComment: 17 pages,LATEX, preprint ICTP -243 1993,figures available by reques

    Lepton asymmetry and the cosmic QCD transition

    Full text link
    We study the influence of lepton asymmetry on the evolution of the early Universe. The lepton asymmetry ll is poorly constrained by observations and might be orders of magnitude larger than the baryon asymmetry bb, l/b2×108|l|/b \leq 2\times 10^8. We find that lepton asymmetries that are large compared to the tiny baryon asymmetry, can influence the dynamics of the QCD phase transition significantly. The cosmic trajectory in the μBT\mu_B-T phase diagram of strongly interacting matter becomes a function of lepton (flavour) asymmetry. Large lepton asymmetry could lead to a cosmic QCD phase transition of first order.Comment: 23 pages, 14 figures; matches published version, including Erratum. Conclusions, pictures, numerics remained unchange

    The magnetoelectrochemical switch

    Get PDF
    In the field of spintronics, the archetype solid-state two-terminal device is the spin valve, where the resistance is controlled by the magnetization configuration. We show here how this concept of spin-dependent switch can be extended to magnetic electrodes in solution, by magnetic control of their chemical environment. Appropriate nanoscale design allows a huge enhancement of the magnetic force field experienced by paramagnetic molecular species in solutions, which changes between repulsive and attractive on changing the electrodes' magnetic orientations. Specifically, the field gradient force created within a sub-100-nm-sized nanogap separating two magnetic electrodes can be reversed by changing the orientation of the electrodes' magnetization relative to the current flowing between the electrodes. This can result in a breaking or making of an electric nanocontact, with a change of resistance by a factor of up to 103. The results reveal how an external field can impact chemical equilibrium in the vicinity of nanoscale magnetic circuits

    Dynamical effects of the neutrino gravitational clustering at Planck angular scales

    Full text link
    We study the CMB anisotropy induced by the non-linear perturbations in the massive neutrino density associated to the non-linear gravitational clustering proceses. Our results show that for the neutrino fraction in agreement with that indicated by the astroparticle and nuclear physics experiments and a cosmological accreting mass comparable with the mass of known clusters, the angular resolution and the sensitivity of the CMB anisotropy measurements from the Planck surveyor will allow the detection of the dynamical effects of the neutrino gravitational clustering.Comment: 40 pages and 12 figures, submitted to ApJ (14 March 2002

    Electronic structure and optical properties of lightweight metal hydrides

    Get PDF
    We study the electronic structures and dielectric functions of the simple hydrides LiH, NaH, MgH2 and AlH3, and the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4 and Mg(AlH4)2, using first principles density functional theory and GW calculations. All these compounds are large gap insulators with GW single particle band gaps varying from 3.5 eV in AlH3 to 6.5 eV in the MAlH4 compounds. The valence bands are dominated by the hydrogen atoms, whereas the conduction bands have mixed contributions from the hydrogens and the metal cations. The electronic structure of the aluminium compounds is determined mainly by aluminium hydride complexes and their mutual interactions. Despite considerable differences between the band structures and the band gaps of the various compounds, their optical responses are qualitatively similar. In most of the spectra the optical absorption rises sharply above 6 eV and has a strong peak around 8 eV. The quantitative differences in the optical spectra are interpreted in terms of the structure and the electronic structure of the compounds.Comment: 13 pages, 10 figure
    corecore