5,992 research outputs found

    Inverter-Based Low-Voltage CCII- Design and Its Filter Application

    Get PDF
    This paper presents a negative type second-generation current conveyor (CCII-). It is based on an inverter-based low-voltage error amplifier, and a negative current mirror. The CCII- could be operated in a very low supply voltage such as ±0.5V. The proposed CCII- has wide input voltage range (±0.24V), wide output voltage (±0.24V) and wide output current range (±24mA). The proposed CCII- has no on-chip capacitors, so it can be designed with standard CMOS digital processes. Moreover, the architecture of the proposed circuit without cascoded MOSFET transistors is easily designed and suitable for low-voltage operation. The proposed CCII- has been fabricated in TSMC 0.18Όm CMOS processes and it occupies 1189.91 x 1178.43Όm2 (include PADs). It can also be validated by low voltage CCII filters

    EFFICIENCY OF ENERGY UTILIZATION OF VOLATILE FATTY ACIDS BY MATURE CATILE GIVEN A HAY OR HIGH-CONCENTRATE DIET

    Get PDF

    Optoelectronic control of spin dynamics at near-THz frequencies in magnetically doped quantum wells

    Full text link
    We use time-resolved Kerr rotation to demonstrate the optical and electronic tuning of both the electronic and local moment (Mn) spin dynamics in electrically gated parabolic quantum wells derived from II-VI diluted magnetic semiconductors. By changing either the electrical bias or the laser energy, the electron spin precession frequency is varied from 0.1 to 0.8 THz at a magnetic field of 3 T and at a temperature of 5 K. The corresponding range of the electrically-tuned effective electron g-factor is an order of magnitude larger compared with similar nonmagnetic III-V parabolic quantum wells. Additionally, we demonstrate that such structures allow electrical modulation of local moment dynamics in the solid state, which is manifested as changes in the amplitude and lifetime of the Mn spin precession signal under electrical bias. The large variation of electron and Mn-ion spin dynamics is explained by changes in magnitude of the sp−d exchange overlap.Comment: 4 pages, 3 figure

    Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles

    Get PDF
    We have used molecular dynamics simulations to investigate interaction of H2 molecules on the exterior surfaces of carbon nanotubes (CNTs): single and bundle types. At 80 K and 10 MPa, it is found that charge transfer occurs from a low curvature region to a high curvature region of the deformed CNT bundle, which develops charge polarization only on the deformed structure. The long-range electrostatic interactions of polarized charges on the deformed CNT bundle with hydrogen molecules are observed to induce a high local-ordering of H2 gas that results in hydrogen liquefaction. Our predicted heat of hydrogen liquefaction on the CNT bundle is 97.6 kcal kg^-1. On the other hand, hydrogen liquefaction is not observed in the CNT of a single type. This is because charge polarization is not developed on the single CNT as it is symmetrically deformed under the same pressure. Consequently, the hydrogen storage capacity on the CNT bundle is much higher due to liquefaction than that on the single CNT. Additionally, our results indicate that it would also be possible to liquefy H2 gas on a more strongly polarized CNT bundle at temperatures higher than 80 K

    The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development

    Get PDF
    We present a new reactive force field ReaxFFHBN derived to accurately model large molecular and condensed phase systems of H, B, and N atoms. ReaxFFHBN has been tested against quantum calculation data for B–H, B–B, and B–N bond dissociations and for H–B–H, B–N–B, and N–B–N bond angle strain energies of various molecular clusters. The accuracy of the developed ReaxFFHBN for B–N–H systems is also tested for (i) H–B and H–B bond energies as a function of out of plane in H–B(NH2)3 and H–N(BH2)3, respectively, (ii) the reaction energy for the B3N3H6+H2-->B3N3H8, and (iii) crystal properties such as lattice parameters and equations of states for the hexagonal type (h-BN) with a graphite structure and for the cubic type (c-BN) with a zinc-blende structure. For all these systems, ReaxFFHBN gives reliable results consistent with those from quantum calculations as it describes well bond breaking and formation in chemical processes and physical properties. Consequently, the molecular-dynamics simulation based on ReaxFFHBN is expected to give a good description of large systems (>2000 atoms even on the one-CPU machine) with hydrogen, boron, and nitrogen atoms

    Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption

    Get PDF
    Collision and adsorption of hydrogen with high incident kinetic energies on a single-walled boron nitride (BN) nanotube have been investigated. Molecular-dynamics (MD) simulations indicate that at incident energies below 14 eV hydrogen bounces off the BN nanotube wall. On the other hand, at incident energies between 14 and 22 eV each hydrogen molecule is dissociated at the exterior wall to form two hydrogen atoms, but only one of them goes through the wall. However, at the incident energies between 23 and 26 eV all of the hydrogen atoms dissociated at the exterior wall are found to be capable of going inside the nanotube and then to recombine to form hydrogen molecules inside the nanotube. Consequently, it is determined that hydrogen should have the incident energy >22 eV to go inside the nanotube. On the other hand, we find that the collisions using the incident energies >26 eV could result in damaging the nanotube structures. In addition our MD simulations find that hydrogen atoms dissociated at the wall cannot bind to either boron or nitrogen atoms in the interior wall of the nanotube

    Molecular Evolution of the Substrate Utilization Strategies and Putative Virulence Factors in Mosquito-Associated Spiroplasma Species

    Get PDF
    Comparative genomics provides a powerful tool to characterize the genetic differences among species that may be linked to their phenotypic variations. In the case of mosquito-associated Spiroplasma species, such approach is useful for the investigation of their differentiations in substrate utilization strategies and putative virulence factors. Among the four species that have been assessed for pathogenicity by artificial infection experiments, Spiroplasma culicicola and S. taiwanense were found to be pathogenic, whereas S. diminutum and S. sabaudiense were not. Intriguingly, based on the species phylogeny, the association with mosquito hosts and the gain or loss of pathogenicity in these species appears to have evolved independently. Through comparison of their complete genome sequences, we identified the genes and pathways that are shared by all or specific to one of these four species. Notably, we found that a glycerol-3-phosphate oxidase gene (glpO) is present in S. culicicola and S. taiwanense but not in S. diminutum or S. sabaudiense. Because this gene is involved in the production of reactive oxygen species and has been demonstrated as a major virulence factor in Mycoplasma, this distribution pattern suggests that it may be linked to the observed differences in pathogenicity among these species as well. Moreover, through comparative analysis with other Spiroplasma, Mycoplasma, and Mesoplasma species, we found that the absence of glpO in S. diminutum and S. sabaudiense is best explained by independent losses. Finally, our phylogenetic analyses revealed possible recombination of glpO between distantly related lineages and local rearrangements of adjacent genes
    • 

    corecore