27,772 research outputs found
Transmitted sound field due to an impulsive line acoustic source bounded by a plate followed by a vortex sheet
The propagation of sound due to a line acoustic source in the moving stream across a semiinfinite vortex sheet which trails from a rigid plate is examined in a linear theory for the subsonic case. A solution for the transmitted sound field is obtained with the aid of multiple integral transforms and the Wiener-Hopf technique for both the steady state (time harmonic) and initial value (impulsive source) situations. The contour of inverse transform and hence the decomposition of the functions are determined through causality and radiation conditions. The solution obtained satisfies causality and the full Kutta conditions. The transmitted sound field is composed of two waves in both the stady state and initial value problems. One is the wave scattered from the edge of the plate which is associated with the bow wave and the instability wave. These waves exist in the downstream sectors. The other is the wave transmitted through the vortex sheet which is also associated with the instability wave. Regional divisions of the transmitted sound field are identified
New high fill-factor triangular micro-lens array fabrication method using UV proximity printing
A simple and effective method to fabricate a high fill-factor triangular
microlens array using the proximity printing in lithography process is
reported. The technology utilizes the UV proximity printing by controlling a
printing gap between the mask and substrate. The designed approximate triangle
microlens array pattern can be fabricated the high fill-factor triangular
microlens array in photoresist. It is due to the UV light diffraction to
deflect away from the aperture edges and produce a certain exposure in
photoresist material outside the aperture edges. This method can precisely
control the geometric profile of high fill factor triangular microlens array.
The experimental results showed that the triangular micro-lens array in
photoresist could be formed automatically when the printing gap ranged from 240
micrometers to 840 micrometers. The gapless triangular microlens array will be
used to increases of luminance for backlight module of liquid crystal displays.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/handle/2042/16838
A percutaneous needle biopsy technique for sampling the supraclavicular brown adipose tissue depot of humans.
Brown adipose tissue (BAT) has been proposed as a potential target tissue against obesity and its related metabolic complications. Although the molecular and functional characteristics of BAT have been intensively studied in rodents, only a few studies have used human BAT specimens due to the difficulty of sampling human BAT deposits. We established a novel positron emission tomography and computed tomography-guided Bergström needle biopsy technique to acquire human BAT specimens from the supraclavicular area in human subjects. Forty-three biopsies were performed on 23 participants. The procedure was tolerated well by the majority of participants. No major complications were noted. Numbness (9.6%) and hematoma (2.3%) were the two minor complications noted, which fully resolved. Thus, the proposed biopsy technique can be considered safe with only minimal risk of adverse events. Adoption of the proposed method is expected to increase the sampling of the supraclavicular BAT depot for research purposes so as to augment the scientific knowledge of the biology of human BAT
The meson annihilation to leptons and inclusive light hadrons
The annihilation of the meson to leptons and inclusive light hadrons is
analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find
that the decay mode, which escapes from the helicity suppression, contributes a
sizable fraction width. According to the analysis, the branching ratio due to
the contribution from the color-singlet component of the meson can be of
order (10^{-2}). We also estimate the contributions from the color-octet
components. With the velocity scaling rule of NRQCD, we find that the
color-octet contributions are sizable too, especially, in certain phase space
of the annihilation they are greater than (or comparative to) the color-singlet
component. A few observables relevant to the spectrum of charged lepton are
suggested, that may be used as measurements on the color-octet and
color-singlet components in the future experiments. A typical long
distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.
Critical behaviour of combinatorial search algorithms, and the unitary-propagation universality class
The probability P(alpha, N) that search algorithms for random Satisfiability
problems successfully find a solution is studied as a function of the ratio
alpha of constraints per variable and the number N of variables. P is shown to
be finite if alpha lies below an algorithm--dependent threshold alpha\_A, and
exponentially small in N above. The critical behaviour is universal for all
algorithms based on the widely-used unitary propagation rule: P[ (1 + epsilon)
alpha\_A, N] ~ exp[-N^(1/6) Phi(epsilon N^(1/3)) ]. Exponents are related to
the critical behaviour of random graphs, and the scaling function Phi is
exactly calculated through a mapping onto a diffusion-and-death problem.Comment: 7 pages; 3 figure
Symmetry and designability for lattice protein models
Native protein folds often have a high degree of symmetry. We study the
relationship between the symmetries of native proteins, and their
designabilities -- how many different sequences encode a given native
structure. Using a two-dimensional lattice protein model based on
hydrophobicity, we find that those native structures that are encoded by the
largest number of different sequences have high symmetry. However only certain
symmetries are enhanced, e.g. x/y-mirror symmetry and rotation, while
others are suppressed. If it takes a large number of mutations to destabilize
the native state of a protein, then, by definition, the state is highly
designable. Hence, our findings imply that insensitivity to mutation implies
high symmetry. It appears that the relationship between designability and
symmetry results because protein substructures are also designable. Native
protein folds may therefore be symmetric because they are composed of repeated
designable substructures.Comment: 13 pages, 10 figure
The and decays with the fourth generation
If the fourth generation fermions exist, the new quarks could influence the
branching ratios of the decays of and . We
obtain two solutions of the fourth generation CKM factor
from the decay of . We use these
two solutions to calculate the new contributions of the fourth generation quark
to Wilson coefficients of the decay of . The branching ratio
and the forward-backward asymmetry of the decay of in the two
cases are calculated. Our results are quite different from that of SM in one
case, almost same in another case. If Nature chooses the formmer, the meson
decays could provide a possible test of the forth generation existence.Comment: 10 pages, 5 figure
Decays of and into vector and pseudoscalar meson and the pseudoscalar glueball- mixing
We introduce a parametrization scheme for where
the effects of SU(3) flavor symmetry breaking and doubly OZI-rule violation
(DOZI) can be parametrized by certain parameters with explicit physical
interpretations. This scheme can be used to clarify the glueball-
mixing within the pseudoscalar mesons. We also include the contributions from
the electromagnetic (EM) decays of and via
. Via study of the isospin violated
channels, such as , ,
and , reasonable constraints on the EM decay
contributions are obtained. With the up-to-date experimental data for
, and , etc, we arrive at a consistent description of the mentioned
processes with a minimal set of parameters. As a consequence, we find that
there exists an overall suppression of the form factors,
which sheds some light on the long-standing " puzzle". By determining
the glueball components inside the pseudoscalar and in
three different glueball- mixing schemes, we deduce that the lowest
pseudoscalar glueball, if exists, has rather small component, and it
makes the a preferable candidate for glueball.Comment: Revised version to appear on J. Phys. G; An error in the code was
corrected. There's slight change to the numerical results, while the
conclusion is intac
- …
