12,365 research outputs found

    Light-Cone Quantization and Hadron Structure

    Get PDF
    In this talk, I review the use of the light-cone Fock expansion as a tractable and consistent description of relativistic many-body systems and bound states in quantum field theory and as a frame-independent representation of the physics of the QCD parton model. Nonperturbative methods for computing the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock state representation of hadrons also describes quantum fluctuations containing intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden color". Fock state components of hadrons with small transverse size, such as those which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions; i.e., "color transparency". The use of light-cone Fock methods to compute loop amplitudes is illustrated by the example of the electron anomalous moment in QED. In other applications, such as the computation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to [email protected]

    Effect of Dietary Components on Larval Life History Characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae)

    Get PDF
    Background: The ability to respond to heterogenous nutritional resources is an important factor in the adaptive radiation of insects such as the highly polyphagous Medfly. Here we examined the breadth of the Medfly’s capacity to respond to different developmental conditions, by experimentally altering diet components as a proxy for host quality and novelty. Methodology/Principal Findings: We tested responses of larval life history to diets containing protein and carbohydrate components found in and outside the natural host range of this species. A 40% reduction in the quantity of protein caused a significant increase in egg to adult mortality by 26.5%±6% in comparison to the standard baseline diet. Proteins and carbohydrates had differential effects on larval versus pupal development and survival. Addition of a novel protein source, casein (i.e. milk protein), to the diet increased larval mortality by 19.4%±3% and also lengthened the duration of larval development by 1.93±0.5 days in comparison to the standard diet. Alteration of dietary carbohydrate, by replacing the baseline starch with simple sugars, increased mortality specifically within the pupal stage (by 28.2%±8% and 26.2%±9% for glucose and maltose diets, respectively). Development in the presence of the novel carbohydrate lactose (milk sugar) was successful, though on this diet there was a decrease of 29.8±1.6 µg in mean pupal weight in comparison to pupae reared on the baseline diet. Conclusions: The results confirm that laboratory reared Medfly retain the ability to survive development through a wide range of fluctuations in the nutritional environment. We highlight new facets of the responses of different stages of holometabolous life histories to key dietary components. The results are relevant to colonisation scenarios and key to the biology of this highly invasive species

    A single sub-km Kuiper Belt object from a stellar Occultation in archival data

    Get PDF
    The Kuiper belt is a remnant of the primordial Solar System. Measurements of its size distribution constrain its accretion and collisional history, and the importance of material strength of Kuiper belt objects (KBOs). Small, sub-km sized, KBOs elude direct detection, but the signature of their occultations of background stars should be detectable. Observations at both optical and X-ray wavelengths claim to have detected such occultations, but their implied KBO abundances are inconsistent with each other and far exceed theoretical expectations. Here, we report an analysis of archival data that reveals an occultation by a body with a 500 m radius at a distance of 45 AU. The probability of this event to occur due to random statistical fluctuations within our data set is about 2%. Our survey yields a surface density of KBOs with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out inferred surface densities from previous claimed detections by more than 5 sigma. The fact that we detected only one event, firmly shows a deficit of sub-km sized KBOs compared to a population extrapolated from objects with r>50 km. This implies that sub-km sized KBOs are undergoing collisional erosion, just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until 1800 hours London time on 16 December. 19 pages; 7 figure

    An A4 flavor model for quarks and leptons in warped geometry

    Get PDF
    We propose a spontaneous A4 flavor symmetry breaking scheme implemented in a warped extra dimensional setup to explain the observed pattern of quark and lepton masses and mixings. The main advantages of this choice are the explanation of fermion mass hierarchies by wave function overlaps, the emergence of tribimaximal neutrino mixing and zero quark mixing at the leading order and the absence of tree-level gauge mediated flavor violations. Quark mixing is induced by the presence of bulk flavons, which allow for cross-brane interactions and a cross-talk between the quark and neutrino sectors, realizing the spontaneous symmetry breaking pattern A4 --> nothing first proposed in [X.G.\,He, Y.Y.\,Keum, R.R.\,Volkas, JHEP{0604}, 039 (2006)]. We show that the observed quark mixing pattern can be explained in a rather economical way, including the CP violating phase, with leading order cross-interactions, while the observed difference between the smallest CKM entries V_{ub} and V_{td} must arise from higher order corrections. We briefly discuss bounds on the Kaluza-Klein scale implied by flavor changing neutral current processes in our model and show that the residual little CP problem is milder than in flavor anarchic models.Comment: 34 pages, 2 figures; version published in JHE

    Low-temperature muon spin rotation studies of the monopole charges and currents in Y doped Ho2Ti2O7

    Get PDF
    In the ground state of Ho2Ti2O7 spin ice, the disorder of the magnetic moments follows the same rules as the proton disorder in water ice. Excitations take the form of magnetic monopoles that interact via a magnetic Coulomb interaction. Muon spin rotation has been used to probe the low-temperature magnetic behaviour in single crystal Ho2−xYxTi2O7 (x = 0, 0.1, 1, 1.6 and 2). At very low temperatures, a linear field dependence for the relaxation rate of the muon precession λ(B), that in some previous experiments on Dy2Ti2O7 spin ice has been associated with monopole currents, is observed in samples with x = 0, and 0.1. A signal from the magnetic fields penetrating into the silver sample plate due to the magnetization of the crystals is observed for all the samples containing Ho allowing us to study the unusual magnetic dynamics of Y doped spin ice

    ASCORE: an up-to-date cardiovascular risk score for hypertensive patients reflecting contemporary clinical practice developed using the (ASCOT-BPLA) trial data.

    No full text
    A number of risk scores already exist to predict cardiovascular (CV) events. However, scores developed with data collected some time ago might not accurately predict the CV risk of contemporary hypertensive patients that benefit from more modern treatments and management. Using data from the randomised clinical trial Anglo-Scandinavian Cardiac Outcomes Trial-BPLA, with 15 955 hypertensive patients without previous CV disease receiving contemporary preventive CV management, we developed a new risk score predicting the 5-year risk of a first CV event (CV death, myocardial infarction or stroke). Cox proportional hazard models were used to develop a risk equation from baseline predictors. The final risk model (ASCORE) included age, sex, smoking, diabetes, previous blood pressure (BP) treatment, systolic BP, total cholesterol, high-density lipoprotein-cholesterol, fasting glucose and creatinine baseline variables. A simplified model (ASCORE-S) excluding laboratory variables was also derived. Both models showed very good internal validity. User-friendly integer score tables are reported for both models. Applying the latest Framingham risk score to our data significantly overpredicted the observed 5-year risk of the composite CV outcome. We conclude that risk scores derived using older databases (such as Framingham) may overestimate the CV risk of patients receiving current BP treatments; therefore, 'updated' risk scores are needed for current patients

    The Dark Side of the Electroweak Phase Transition

    Get PDF
    Recent data from cosmic ray experiments may be explained by a new GeV scale of physics. In addition the fine-tuning of supersymmetric models may be alleviated by new O(GeV) states into which the Higgs boson could decay. The presence of these new, light states can affect early universe cosmology. We explore the consequences of a light (~ GeV) scalar on the electroweak phase transition. We find that trilinear interactions between the light state and the Higgs can allow a first order electroweak phase transition and a Higgs mass consistent with experimental bounds, which may allow electroweak baryogenesis to explain the cosmological baryon asymmetry. We show, within the context of a specific supersymmetric model, how the physics responsible for the first order phase transition may also be responsible for the recent cosmic ray excesses of PAMELA, FERMI etc. We consider the production of gravity waves from this transition and the possible detectability at LISA and BBO

    Electroweak Constraints on Warped Geometry in Five Dimensions and Beyond

    Get PDF
    Here we consider the tree level corrections to electroweak (EW) observables from standard model (SM) particles propagating in generic warped extra dimensions. The scale of these corrections is found to be dominated by three parameters, the Kaluza-Klein (KK) mass scale, the relative coupling of the KK gauge fields to the Higgs and the relative coupling of the KK gauge fields to fermion zero modes. It is found that 5D spaces that resolve the hierarchy problem through warping typically have large gauge-Higgs coupling. It is also found in D>5D>5 where the additional dimensions are warped the relative gauge-Higgs coupling scales as a function of the warp factor. If the warp factor of the additional spaces is contracting towards the IR brane, both the relative gauge-Higgs coupling and resulting EW corrections will be large. Conversely EW constraints could be reduced by finding a space where the additional dimension's warp factor is increasing towards the IR brane. We demonstrate that the Klebanov Strassler solution belongs to the former of these possibilities.Comment: 18 pages, 3 figures (references added) version to appear in JHE

    The Conformal Manifold of Chern-Simons Matter Theories

    Full text link
    We determine perturbatively the conformal manifold of N=2 Chern-Simons matter theories with the aim of checking in the three dimensional case the general prescription based on global symmetry breaking, recently introduced. We discuss in details few remarkable cases like the N=6 ABJM theory and its less supersymmetric generalizations with/without flavors. In all cases we find perfect agreement with the predictions of global symmetry breaking prescription.Comment: 1+17 pages, 1 figure, references adde

    Superconducting, Insulating, and Anomalous Metallic Regimes in a Gated Two-Dimensional Semiconductor-Superconductor Array

    Full text link
    The superconductor-insulator transition in two dimensions has been widely investigated as a paradigmatic quantum phase transition. The topic remains controversial, however, because many experiments exhibit a metallic regime with saturating low-temperature resistance, at odds with conventional theory. Here, we explore this transition in a novel, highly controllable system, a semiconductor heterostructure with epitaxial Al, patterned to form a regular array of superconducting islands connected by a gateable quantum well. Spanning nine orders of magnitude in resistance, the system exhibits regimes of superconducting, metallic, and insulating behavior, along with signatures of flux commensurability and vortex penetration. An in-plane magnetic field eliminates the metallic regime, restoring the direct superconductor-insulator transition, and improves scaling, while strongly altering the scaling exponent
    corecore