32,928 research outputs found

    Neutrino-induced nucleosynthesis and the site of the r process

    Get PDF
    If the r process occurs deep within a type II supernova, probably the most popular of the proposed sites, abundances of r-process elements may be altered by the intense neutrino flux. We point out that the effects would be especially pronounced for eight isotopes that can be efficiently synthesized by the neutrino reactions following r-process freeze-out. We show that the observed abundances of these isotopes are entirely consistent with neutrino-induced nucleosynthesis, strongly arguing for a supernova r-process site. The deduced neutrino fluences place stringent constraints on the freeze-out radius and dynamic time scale of the r process

    Structure of Stochastic Dynamics near Fixed Points

    Full text link
    We analyze the structure of stochastic dynamics near either a stable or unstable fixed point, where force can be approximated by linearization. We find that a cost function that determines a Boltzmann-like stationary distribution can always be defined near it. Such a stationary distribution does not need to satisfy the usual detailed balance condition, but might have instead a divergence-free probability current. In the linear case the force can be split into two parts, one of which gives detailed balance with the diffusive motion, while the other induces cyclic motion on surfaces of constant cost function. Using the Jordan transformation for the force matrix, we find an explicit construction of the cost function. We discuss singularities of the transformation and their consequences for the stationary distribution. This Boltzmann-like distribution may be not unique, and nonlinear effects and boundary conditions may change the distribution and induce additional currents even in the neighborhood of a fixed point.Comment: 7 page

    Relative Entropy: Free Energy Associated with Equilibrium Fluctuations and Nonequilibrium Deviations

    Full text link
    Using a one-dimensional macromolecule in aqueous solution as an illustration, we demonstrate that the relative entropy from information theory, kpkln(pk/pk)\sum_k p_k\ln(p_k/p_k^*), has a natural role in the energetics of equilibrium and nonequilibrium conformational fluctuations of the single molecule. It is identified as the free energy difference associated with a fluctuating density in equilibrium, and is associated with the distribution deviate from the equilibrium in nonequilibrium relaxation. This result can be generalized to any other isothermal macromolecular systems using the mathematical theories of large deviations and Markov processes, and at the same time provides the well-known mathematical results with an interesting physical interpretations.Comment: 5 page

    The Spin Mass of an Electron Liquid

    Get PDF
    We show that in order to calculate correctly the {\it spin current} carried by a quasiparticle in an electron liquid one must use an effective "spin mass" msm_s, that is larger than both the band mass, mbm_b, which determines the charge current, and the quasiparticle effective mass mm^*, which determines the heat capacity. We present microscopic calculations of msm_s in a paramagnetic electron liquid in three and two dimensions, showing that the mass enhancement ms/mbm_s/m_b can be a very significant effect.Comment: 10 pages, 1 figur

    Hydrodynamic slip boundary condition at chemically patterned surfaces: A continuum deduction from molecular dynamics

    Full text link
    We investigate the slip boundary condition for single-phase flow past a chemically patterned surface. Molecular dynamics (MD) simulations show that modulation of fluid-solid interaction along a chemically patterned surface induces a lateral structure in the fluid molecular organization near the surface. Consequently, various forces and stresses in the fluid vary along the patterned surface. Given the presence of these lateral variations, a general scheme is developed to extract hydrodynamic information from MD data. With the help of this scheme, the validity of the Navier slip boundary condition is verified for the chemically patterned surface, where a local slip length can be defined. Based on the MD results, a continuum hydrodynamic model is formulated using the Navier-Stokes equation and the Navier boundary condition, with a slip length varying along the patterned surface. Steady-state velocity fields from continuum calculations are in quantitative agreement with those from MD simulations. It is shown that, when the pattern period is sufficiently small, the solid surface appears to be homogeneous, with an effective slip length that can be controlled by surface patterning. Such a tunable slip length may have important applications in nanofluidics.Comment: 41 pages, 17 figure
    corecore