265 research outputs found

    Measurement of the strong interaction induced shift and width of the 1s state of kaonic deuterium at J-PARC

    Get PDF
    The antikaon-nucleon interaction close to threshold provides crucial information on the interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD. In this context the importance of kaonic deuterium X-ray spectroscopy has been well recognized, but no experimental results have yet been obtained due to the difficulty of the measurement. We propose to measure the shift and width of the kaonic deuterium 1s state with an accuracy of 60 eV and 140 eV respectively at J-PARC. These results together with the kaonic hydrogen data (KpX at KEK, DEAR and SIDDHARTA at DAFNE) will then permit the determination of values of both the isospin I=0 and I=1 antikaon-nucleon scattering lengths and will provide the most stringent constraints on the antikaon-nucleon interaction, promising a breakthrough. Refined Monte Carlo studies were performed, including the investigation of background suppression factors for the described setup. These studies have demonstrated the feasibility of determining the shift and width of the kaonic deuterium atom 1s state with the desired accuracy of 60 eV and 140 eV.Comment: 12 pages, 9 figure

    Structure near KK^-+pp+pp threshold in the in-flight 3^3He(K,Λp)n(K^-,\Lambda p)n reaction

    Full text link
    To search for an S= -1 di-baryonic state which decays to Λp\Lambda p, the 3He(K,Λp)nmissing {\rm{}^3He}(K^-,\Lambda p)n_{missing} reaction was studied at 1.0 GeV/cc. Unobserved neutrons were kinematically identified from the missing mass MXM_X of the 3He(K,Λp)X {\rm{}^3He}(K^-,\Lambda p)X reaction in order to have a large acceptance for the Λpn\Lambda pn final state. The observed Λpn\Lambda p n events, distributed widely over the kinematically allowed region of the Dalitz plot, establish that the major component comes from a three nucleon absorption process. A concentration of events at a specific neutron kinetic energy was observed in a region of low momentum transfer to the Λp\Lambda p. To account for the observed peak structure, the simplest S-wave pole was assumed to exist in the reaction channel, having Breit-Wigner form in energy and with a Gaussian form-factor. A minimum χ2\chi^2 method was applied to deduce its mass MX =M_X\ = 2355 8+6 ^{+ 6}_{ - 8} (stat.) ±12 \pm 12 (syst.) MeV/c2^2, and decay-width ΓX =\Gamma_X\ = 110 17+19 ^{+ 19}_{ - 17} (stat.) ±27 \pm 27 (syst.) MeV/c2^2, respectively. The form factor parameter QXQ_X \sim 400 MeV/cc implies that the range of interaction is about 0.5Comment: 12pages, 8 figure

    ヨウリョクタイガタ フェレドキシン ノ コウゾウ カイセキ 2.8Å ブンカイノウ

    Get PDF
    Remarkable progress in the physical parameters of net-current free plasmas has been made in the Large Helical Device (LHD) since the last Fusion Energy Conference in Chengdu, 2006 (O.Motojima et al., Nucl. Fusion 47 (2007) S668). The beta value reached 5 % and a high beta state beyond 4.5% from the diamagnetic measurement has been maintained for longer than 100 times the energy confinement time. The density and temperature regimes also have been extended. The central density has exceeded 1.0 x 10^21 m^-3 due to the formation of an Internal Diffusion Barrier (IDB). The ion temperature has reached 6.8 keV at the density of 2 x 10^19m^-3, which is associated with the suppression of ion heat conduction loss. Although these parameters have been obtained in separated discharges, each fusion-reactor relevant parameter has elucidated the potential of net-current free heliotron plasmas. Diversified studies in recent LHD experiments are reviewed in this paper

    Pole position of Λ(1405)\Lambda(1405) measured in d(K,n)πΣd(K^-,n)\pi\Sigma reactions

    Full text link
    We measured a set of π±Σ\pi^\pm\Sigma^\mp, π0Σ0\pi^0\Sigma^0, and πΣ0\pi^-\Sigma^0 invariant mass spectra below and above the KˉN\bar{K}N mass threshold in KK^--induced reactions on deuteron. We deduced the SS-wave KˉNπΣ\bar{K}N\rightarrow\pi\Sigma and KˉNKˉN\bar{K}N\rightarrow\bar{K}N scattering amplitudes in the isospin 0 channel in the framework of a KˉN\bar{K}N and πΣ\pi\Sigma coupled channel. We find that a resonance pole corresponding to Λ(1405)\Lambda(1405) is located at 1417.77.4+6.0^{+6.0}_{-7.4}(fitting errors)1.0+1.1^{+1.1}_{-1.0}(systematic errors) + [26.17.9+6.0[-26.1^{+6.0}_{-7.9}(fitting errors)2.0+1.7^{+1.7}_{-2.0}(systematic errors)]ii MeV/c2c^2, closer to the KˉN\bar{K}N mass threshold than the value determined by the Particle Data Group.Comment: 8 pages, 5 figure
    corecore